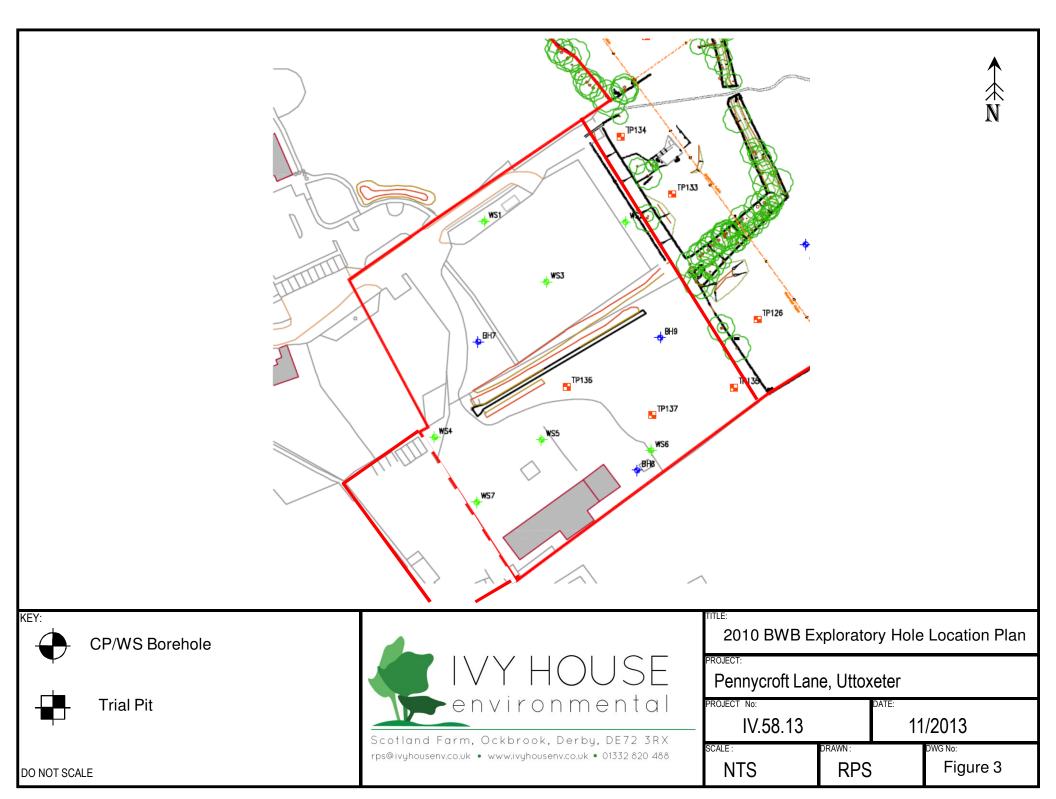
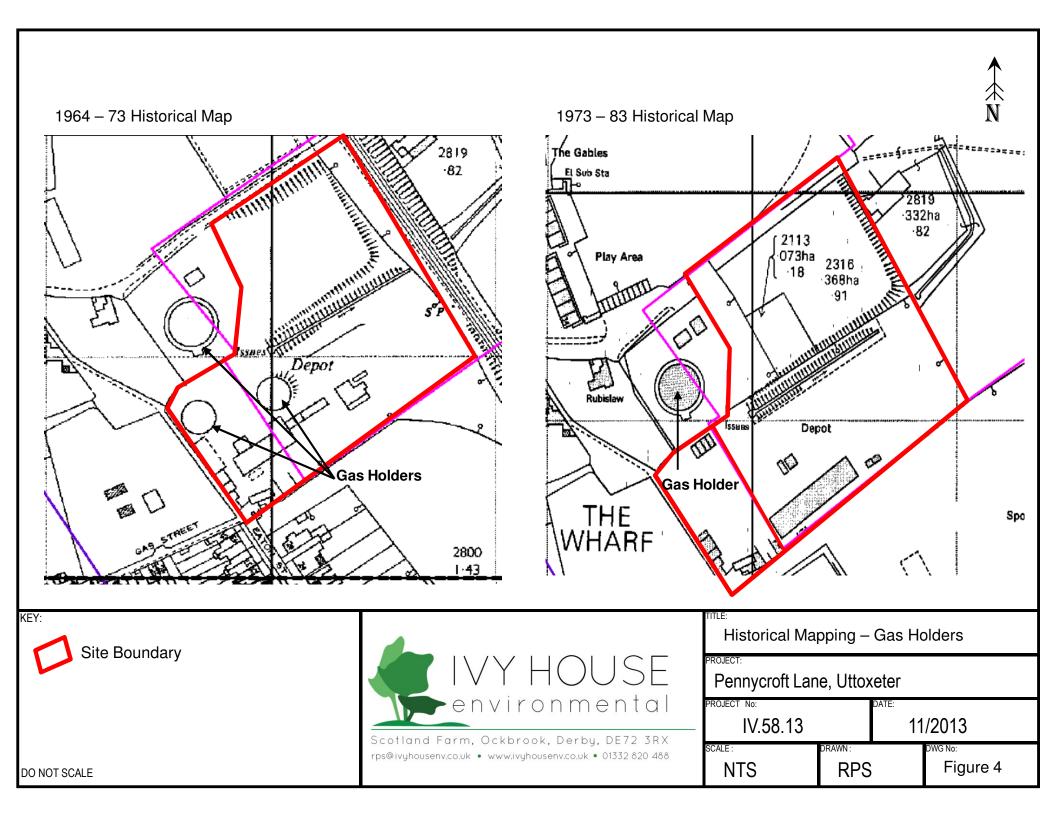

APPENDIX A

P/2014/01663 APPENDICES PHASE 11A Environmental Assessment




Scotland Farm, Ockbrook, Derby, DE72 3RX rps@ivyhousenv.co.uk • www.ivyhousenv.co.uk • 01332 820 488

	Site Layout			
	PROJECT: Pennycroft Lan	e. Uttox	eter	
	PROJECT No:	,	DATE:	
-	IV.58.13			/2013
	SCALE: NTS	drawn: RPS		Figure 2

APPENDIX B

APPENDIX C

To: Jon Imber/Joanne Roebuck

PROPOSAL: Outline application to develop land by the erection of up to 49 dwellings

REF: P/2013/00206

OUR REF: 3256048

Location: Land at Pennycroft Lane Uttoxeter Staffordshire

SUBMITTED REPORTS

Site appraisal and intrusive investigation reports were submitted with the application in relation to contamination issues on the site. Details as follows:

- -The Dove Way (Areas A & B). Phase 1 Geo-Environmental Assessment Report. NTE285/01/V1. July 2010.
- -The Dove Way (Areas A & B). Phase 2 Geo-Environmental Factual Report. NTE285/03/V1. August 2010.
- -The Dove Way (Areas A & B). Phase 2 Geo-Environmental Assessment Report. NTE285/05/V1. August 2010.
- Addendum Gas Monitoring Assessment DRW/RTR/NTE285. October 2010. (refers to Area C but includes two additional monitoring periods for BH7-BH9. There is no updated risk assessment for Area B which takes the additional data into account.

The following comments should be communicated back to the developer if planning permission is to be granted:

SUMMARY OF REPORTS

Area B, Phase 1:

This report noted that some of Area B was not accessible during the site walkover. The inaccessible area contained a 3000 litre AST with a small steel bund (not adequately investigated for leaks/staining due to lack of access).

Other relevant features identified included other ASTs and potentially Japanese Knotweed.

The need for gas monitoring was indicated, and the possibility of using a soil capping layer was mooted.

Area B, Phase 2, Factual:

This report confirmed which samples locations were contained within Areas B, as follows –

Trial Pits x 3 (TP135 – TP137). Benzo(a)pyrene contamination noted. Example concentration of PAHs (cumulative total of 16 PAHs of concern) was 1g/kg. Typical values for residential gardens would be less than <50mg/kg.

i.e. the level of contamination at this site is twenty times that considered to be a minimal risk.

Window Samples x 7 (WS1 – WS7). Total Aromatic Hydrocarbons elevated, e.g. 2g/kg).

Boreholes x 3 (BH7 – BH9). Four monitoring events were carried out to monitor for ground gases (no borehole damage so complete datasets obtained). Some moderately elevated carbon dioxide was detected, risk assessment the site to be classified as Characteristic Situation 1 (i.e. no gas protection measures required), however further monitoring was to provide additional refinement to the risk assessment (see below). A further concern is due to vapours from volatile contaminants in the ground.

The report also states that appropriate service ducting/pipes should be utilised, e.g. chemically-resistant water pipes with clean surrounding backfill. It recommended that relevant service providers should be contacted for their requirements in light of the prevailing site conditions. Such details should be included in a Remediation Method Statement.

Generally, metal contamination across Area B was not excessive (compared with the scale of exceedance caused by hydrocarbons), albeit there a few sample locations which were elevated when compared against the relevant residential with gardens assessment criteria.

Area B, Phase 2, Assessment:

The executive summary states the following –

Site assessment has noted the ground contains elevated levels of complex cyanides ('blue billy', a residue from gasworks operations); Total Petroleum Hydrocarbons (TPH); Polycyclic Aromatic Hydrocarbons (PAHs); Benzene, Toluene, Ethylene and Xylene (BTEX); Arsenic; Chromium (this was not speciated during investigation and can be present in two forms, Cr III and/or Cr VI, the latter of which has a higher toxicity). A vapour risk was also identified from the relevant volatile contaminants (e.g. BTEX).

Groundwater at the site was found to contain elevated TPH, PAH and cyanide. The groundwater gradient determined the direction of flow to be eastwards, with a contaminant plume therefore migrating in that direction to the adjacent site.

BWB recommendations stated that DQRA (Detailed Quantitative Risk Assessment) should be carried out to determine the risk to controlled waters (including ground waters and surface waters).

Remedial options considered at this stage include the use of a 700mm – 900mm soil capping layer, including either a separation membrane or hard to dig layer at the lower interface with the existing ground material. The installation of vapour membranes in the new dwellings was also recommended.

The report identified the risk to human health as HIGH, and the risk to controlled waters as MODERATE. This assumes no remedial works are to be carried out.

Finer detail on contamination levels is available in the bulk of the report:

Soils – There is a Chromium hotspot in the area of TP137. The value of 82.2 mg/kg is in excess of a typical assessment criteria value of 4mg/kg (Cr VI). Complex cyanides are noted to peak at the same location, with a value of 22,500mg/kg found (hugely excessive when compared to human health risk criteria). At TP 137 and WS 6, there are varying exceedances of ALL analysis parameters. All other sample points show some exceedances of one or more parameters.

Groundwater – BH8 and BH9 displayed elevated levels of cyanide. BH7 – BH9 showed elevated levels of PAHs. There is a possibility of PAH contamination within the Wharf Brook (which bisects the site).

A conceptual model was included with the report (Table 11) which summarises the established risks.

Addendum Gas Monitoring Report:

Report relates to Area C, but it includes the two additional monitoring events for Area B. The ground gas risk assessment for Area B has not been updated with this additional data.

Officer Statement and Recommendations

Following the above investigations and reports, the following concerns remain:

GROUND GASES

There are six monitoring results submitted for Area B, however the original risk assessment has not been updated to take into account the full data set. Conclusions should be updated to include all data.

It is worth noting that suitably hydrocarbon vapour-resistant membranes are recommended as part of the detailed design of gas protection measures.

GROUND CONTAMINATION

SAMPLING DENSITY - Given the previous uses of the site, and nature and scale of the intended development, the current sampling points do not adequately characterise the site in terms of ground contamination. Considerable levels of contamination affect this site, and the extent of such areas or plumes (in the near-surface soils and at depth) have not been sufficiently delineated, leaving a lack of confidence in the data.

PROPOSED MITIGATION - Some measures have been proposed, which involve the use of a soil capping layer and a hard to dig layer in garden and landscaped areas. The use of capping layers is not appropriate where gross contamination exists, a characteristic of this site. No discussion is made of hotspot/plume excavation prior to the placement of any capping.

As the sole proposal, an additional concern is how long the above capping layer is expected to remain effective for. There is no discussion of this in the submitted reports. Typically, the proposed land use would be in place for at least 25+ years (more likely at least 50). An assurance is required that the intended mitigation will not degrade, and will remain effective over the whole period of intended use.

Remedial works as a whole are not well-defined.

GROUNDWATER CONTAMINATION

The report notes that groundwater contamination appears to be migrating from the site to the east, and may also represent a risk to the surface waters (Wharf Brook).

Therefore, the report recommends a DQRA to quantify the risk to controlled waters, and such a report has not been submitted for consideration. The proposed removal of the upper 700-900mm of material at the site will not necessarily remove the risk to groundwater.

The Environment Agency comments should be sought in relation to the impact on controlled waters at and near the site.

REQUIREMENTS

A Remediation Method Statement (detailing all mitigating works) has not been submitted. It is the opinion of this officer that such a statement cannot be effectively produced and relied upon unless the information gaps detailed above are addressed first.

Given the sensitivity of the proposed use, and the considerations noted above, I am minded to recommend refusal of this application until work to progress the above gaps has been addressed.

If the LPA is minded to grant permission, I would recommend the following conditions, incorporating the foregoing comments as an informative in order that those points be addressed.

Based on the above comments, and previous correspondence with the developer's consultant, I recommend the conditions below:

CONTAMINATED LAND Paragraph C1 CONDITION

This department is concerned that the proposed site may have soil and groundwater contamination, and the application does not include an assessment of levels of contamination or details of any proposed remediation works.

No development approved by this permission shall be commenced prior to submission (and subsequent approval in writing) of documents 1) and 2) to the Local Planning Authority (LPA), together with a timetable of works. Works can only proceed once written approval of the submissions has been obtained from the LPA.

Any contaminated land assessment must be carried out in accordance with <u>current UK guidance</u> and should include a conceptual site model.

In order to safeguard human health and the environment and identify potential contamination on-site and the potential for off-site migration, I request the following:

- 1) Continuing works as necessary to suitably characterise the site in terms of any contamination or potential for ground gas generation.
- 2) If remedial measures are required, a **Remediation Method Statement** shall also be submitted, detailing works to be carried out to mitigate or remove the contamination.
- 3) If any additional contamination is identified or discovered during works on site, which has not previously been considered in the Remediation Method Statement, then no further development (unless otherwise agreed in writing by the LPA) shall be carried out until the developer has submitted additional remediation proposals for approval. Any approved proposals shall thereafter form part of the Remediation Method Statement.
- 4) Upon completion of the works, a Remediation Validation Report (Phase 3) shall be submitted. This should include a signed declaration outlining the remediation works that have been carried out, and confirmation that remedial targets have been achieved to the satisfaction of the LPA. This shall be submitted prior to any occupation of any of the dwellings on site unless otherwise agreed in writing by the LPA.

It is recommended that all reports are submitted electronically where possible.

GROUND GASES Paragraph L1 CONDITION

If it is deemed that ground gas protection measures are required, then buildings should be constructed to the standards specified within: BRE Report 212, Construction of new buildings on gas-contaminated land (1991) and BRE 414, Protection Measures for housing on gas-contaminated land (2001). Selected membranes should be designed to be gas resistant and 500 microns in thickness (2000 gauge). The measures chosen must, as a minimum, fulfil the requirements of BS8485:2007, and be detailed and submitted to the Planning Authority for approval.

Additionally, there is a requirement for hydrocarbon vapour-resistant membranes within constructions at the site. If measures are also required for methane and carbon dioxide (as referred to above), then combination measures are acceptable.

Any necessary works shall be carried out either before or during the course of development as appropriate.

Upon completion of the approved works, a signed declaration shall be submitted to the LPA, including confirmation that remedial targets have been achieved. This shall be submitted and approved prior to any occupation of any of the dwellings on site unless otherwise agreed in writing by the LPA.

IMPORTED SOIL MATERIALS Paragraph SM1 CONDITION

Any material imported for landscaped areas or gardens should be analysed to ensure it is suitable for use, in terms of human health, and as a suitable growth medium.

For material certified under BS3882:2007, a copy of the analysis certificate (comprising of the specified requirements, plus an appropriate list of contaminants, including hydrocarbons) should be submitted to the Local Authority for approval before material is imported. After approval and placement of material, the chemical quality should be analysed, with the frequency of analysis being one sample per 100m³. The depth of placement shall also be recorded in order to ensure remedial targets are met. The post-placement details shall be submitted as part of the validation report.

For material that has not been certified under BS3882:2007, full details of the location of material source(s), accompanied by representative chemical analysis (including a comprehensive set of parameters, for example: pH, particle composition, and contaminants – including hydrocarbons), at a frequency not less than one sample per 5000m³ (with a minimum of at least one sample per source site) should be submitted to the Local Authority for approval before material is imported. After approval and placement of material, the chemical quality should be analysed, with the frequency of analysis being one sample per 50m³. The depth of placement shall also be recorded in order to ensure remedial targets are met. The post-placement details shall be submitted as part of the validation report.

PHASED DEVELOPMENT: If works are intended to complete on a phased basis, then it is acceptable to submit source/certification details, and subsequent validation reports on a phased basis also, provided that plans showing the relevant area are also submitted alongside the other details for each phase.

JAPANESE KNOTWEED

Before any works are undertaken, the site must be surveyed by an approved environmental consultant for the presence of Japanese Knotweed and a copy of this survey sent to the Local Planning Authority. Please note that Japanese Knotweed can be far more extensive than the visible parts on the surface and that the underground parts of the plant may extend laterally up to 7 metres beyond this.

Therefore, this survey must also note any knotweed adjoining the site. If Japanese Knotweed is confirmed, full details of a scheme for its eradication and/or control shall be submitted to and approved by the Local Planning Authority prior to the commencement of work on site, and the approved scheme shall be implemented prior to the commencement of the use of the building(s).

Reason for conditions:

To prevent unacceptable risks to health and pollution of the environment in accordance with the aims and objectives of the National Planning Policy Framework. Where a site is affected by contamination or land stability issues, responsibility for securing a safe development rests with the developer and/or landowner.

ADDITIONAL NOTES

- It is assumed that the Petroleum Officer has been consulted in connection with the removal or decommissioning of any underground storage tanks and associated pipe work.
- ii) It is essential that all parties concerned with the development of the site are informed of the risks and appropriate measures should be taken to protect worker safety, such as PPE and hygiene practices. All works shall be carried out with regard to Health and Safety legislation.
- iii) It is assumed that the Environment Agency has been consulted on the proposed development.
- iv) Any material imported for landscaped areas or gardens should be analysed to ensure it is suitable for use, the results of which should be submitted to the Local Authority for approval.
- v) Please refer to the attached informative for advice on the requirements of this condition.

Dave Fountain
Contaminated Land Officer

Informative to Paragraph C1:

The Council's Environmental Health Department offers the following advice regarding the preparation of the recording and remediation of ground contamination.

- A Phase 1 'Desktop' Study, carried out by a competent person, should be completed as a first step. This is used to identify and evaluate all potential sources and impacts of land and/or groundwater contamination relevant to the site (historic and current). The Phase 1 study will inform later stages of the investigation.
- If the Desktop Study indicates a potential for contamination, a **Phase 2 Intrusive Site Investigation** should follow to identify areas of contamination and allow a site-specific risk assessment to be completed. This work should be completed in line with: BS10175 Investigation of Potentially Contaminated Sites Code of Practice; and BS5930 Code of practice for site investigations. The main objective for this Phase 2 report should be to quantify the risk to human health, groundwater and surface water.
- Where remediation of the site proves necessary, a remediation strategy may be discussed with this Authority's Contaminated Land Officer in advance of detailed submission to the LPA. This can be helpful to both parties in resolving any issues with the site.
- > To speed up the process, it is suggested that all investigation and associated reports are submitted to the LPA as soon as they are completed. These should be produced in duplicate with copies being made available to both Planning Control and Environmental Health Divisions of this Authority. Submission of an additional copy in electronic format is also welcomed.

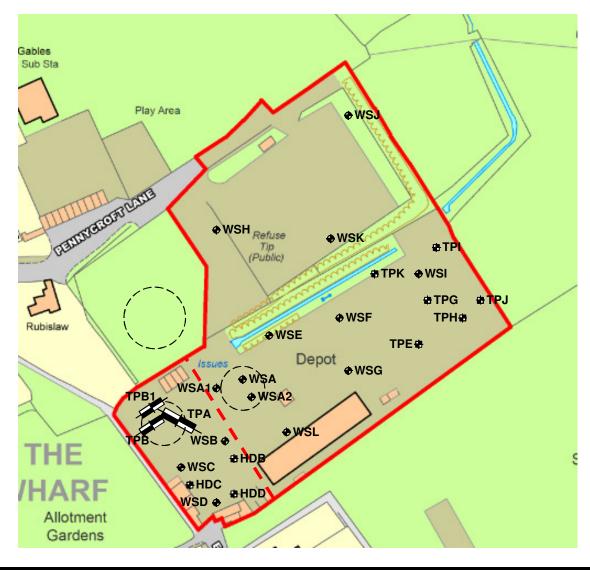
Advice on Phase 3 Reports - Remediation & Validation

These reports should include information on the following:

i) Remediation Statements

- Objectives of the remediation works.
- Details of the remedial works to be carried out, to include:
 - * Description of ground conditions (soil and groundwater).
 - * Type, form and scale of contamination to be remediated.
 - * Remediation methodology.
 - * Site plans/drawings.
 - * Phasing of works and approximate timescales.
 - * Consents and licences e.g. (discharge consents, waste management licence, asbestos waste material removal licence etc.).
 - * Site management measures to protect neighbours.
- Details of how the works will be validated to ensure the remediation objectives have been met; to include:
 - * Sampling strategy.
 - * Use of on- site observations, visual/olfactory evidence.
 - * Chemical analysis.
 - * Proposed clean-up standards (i.e. contaminant concentration).

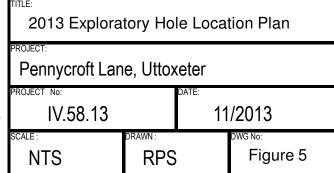
ii) Validation Reports


- Include information as detailed in i) above.
- Details of whom carried out the work.
- Details and justification of any changes from original remediation statement.
- Substantiating data should include where appropriate:
 - * Laboratory and in situ test results.
 - * Monitoring for groundwater and gases.
 - * Summary data plots and tables relating to clean-up criteria.
 - * Plans showing treatment areas and details of any differences from the original remediation statement.
 - * Waste management documentation.
- Confirmation that remediation objectives have been met.

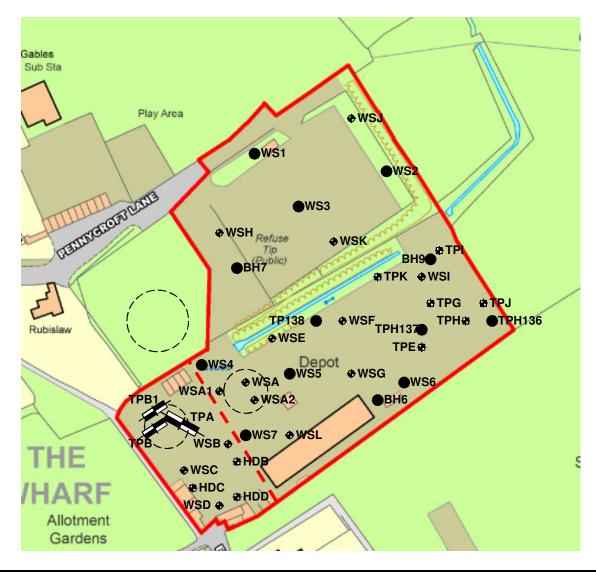
Dave Fountain
Contaminated Land Officer

APPENDIX D

WS Borehole



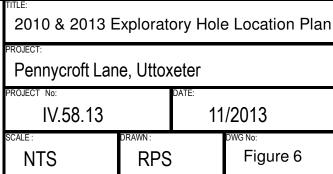
Trial Pit


Approximate Location of Historical Gas Holder

DO NOT SCALE

WS Borehole

Trial Pit


Approximate Location of Historical Gas Holder

2010 Exploratory Hole

DO NOT SCALE

Scotland Farm, Ockbrook, Derby, DE72 3RX rps@ivyhousenv.co.uk • www.ivyhousenv.co.uk • 01332 820 488

TPA

Sheet 1 of 1

Project No:	IV.58.13	Method:	Trial Pit Excavation	Co-ordinates: Ground Level:	N/R N/R
Site:	Pennycroft, Uttoxeter	Plant:	JCB 3CX	Start Date:	08.10.13
Client:	East Staffs BC		002 007.	Finish Date:	08.10.13

Client: East Staffs BC	i:	JCB 3	BCX	Start Dat Finish Da	
Description of Strata	Depth	San	npling	Legend	U100 / N Value
,	(m)		Depth (m)	3.	Field / Lab. Testing
MADE GROUND: Roadstone with gravel of brick and					
tarmac planings.	0.2				
MADE GROUND: whole bricks and concrete.	0.4				
MADE GROUND: Dark brown, sandy fine to coarse GRAVEL of concrete, brick, clinker, coal and brick cobbles. Strong tar odour.					
	1.0	D/J	1.0		
Brickwork obstruction @ 1.4mbgl. Trial pit extended	1.4	D/J	1.4		
into trench in southerly direction.					
2.0 – 7.0 metres along trench. MADE GROUND: Black, clayey, sandy fine to coarse GRAVEL of ash- clinker, brick, sandstone and limestone. Tar stained and strong odour.	0.4 – 1.4				
Soft reddish brown very sandy CLAY. Slit tar stain and	1.6				
odour noted throughout.	1.0				
Trial Trench terminated at 1.0mbgl & 7m in length					
Kev: Bulk (Bulk Bag)	D Dist	ırhad	•	V 40ml Gla	nco Viol

Key:	Bulk (Bulk Bag)	D. Disturbed	V. 40ml Glass Vial
	W. Water	G. Amber Glass Jar / Bottle	N. 'N' value
	PID. Photo Ionisation Detector (ppm)	T. Plastic Tub	HP. Hand Penetrometer

Contamination	n Observations During Excavation		PI	D Monitoring	
Depth	Made ground and perched water within the		Depth:	Depth:	Depth:
Observed	gas holder contaminated with tar residues.		PPM:	PPM:	PPM:
Seepage at 1	.4m along trench				

NOTES: Services: Backfill:	Prior to excavation, the trial pit location was scanned with a C The trial pit was backfilled on completion with arisings and le	` ,	
N/R - Not Required	N/A - Not Applicable	Logged By: Approved By:	RS CRS

TPB

Sheet 1 of 1

Project No:	IV.58.13	Method:	Trial Pit	Co-ordinates:	N/R
Site:	Pennycroft, Uttoxeter		Excavation	Ground Level:	N/R
Olisanda	Foot Otella DO	Plant:	JCB 3CX Start Date:		08.10.13
Client:	East Staffs BC			Finish Date:	08.10.13

Description of Strata	Depth		npling	Legend	U100 / N Value
	(m)	Type &	Depth (m)		Field / Lab. Testing
MADE GROUND: Roadstone with gravel of brick and					
tarmac planings.	0.2				
	1				
MADE GROUND: whole bricks and concrete.	0.5			_	
MADE COOLING, Block, along, and, fine to accuse					
MADE GROUND: Black, clayey, sandy fine to coarse					
GRAVEL of ash-clinker, brick, sandstone and					
limestone. Tar stained and strong odour.					
	1.4				
	1.4				
Trial nit out and ad into transh at right angles to TDA in					
Trial pit extended into trench at right angles to TPA in westerly direction.					
westerry direction.					
	1.4	D/J	1.4@		
2.0 – 4.0 metres along trench. MADE GROUND:	1.4	D/3	3.0m		
Black, clayey, sandy fine to coarse GRAVEL of ash-			3.0111		
clinker, brick, sandstone and limestone. Tar stained					
and strong odour					
and strong ododi					
Heavy perched water ingress at 2.2m, filled trench to					
1.6mbgl.					
	2.5				
Taial Taranah Assarina Andrew de Adol O Sanha (C. 4.)	1			 	
Trial Trench terminated at 1.0 – 2.5mbgl & 4m in					
length	1	<u> </u>			
Keen Bulk (Bulk Been)	D D:44			V 40mal CI	\/i-l

Key:	Bulk (Bulk Bag) W. Water PID. Photo Ionisation Detector (ppm)	D. Disturbed G. Amber Glass Jar / Bottle T. Plastic Tub	V. 40ml Glass Vial N. 'N' value HP. Hand Penetrometer
	FID. FIIOto Ionisation Detector (ppm)	1. Flastic Tub	HF. Hand Felletionletel

Contamination	n Observations During Excavation		PI	D Monitoring	
Depth	Made ground and perched water within the		Depth:	Depth:	Depth:
Observed	gas holder contaminated with tar residues.		PPM:	PPM:	PPM:
Seepage at 1	Seepage at 1.4 at start of trench. Heavy flow at 4m along				
trench at 2.2mbgl.					

NOTES: Services: Backfill:	Prior to excavation, the trial pit location was scanned with a The trial pit was backfilled on completion with arisings and I		
N/R - Not Required		Logged By:	RS
All depths in metre	s below ground level;	Approved By:	CRS

TPB1

Sheet 1 of 1

Project No:	IV.58.13	Method:	Trial Pit	Co-ordinates:	N/R
Site:	Pennycroft, Uttoxeter		Excavation	Ground Level:	N/R
Olisanda	Foot Otella DO	Plant:	JCB 3CX Start Date:		08.10.13
Client:	East Staffs BC			Finish Date:	08.10.13

Description of Strata	Depth		npling	Legend	U100 / N Value
	(m)	Type &	Depth (m)		Field / Lab. Testing
MADE GROUND: Roadstone with gravel of brick and	0.0				
tarmac planings.	0.2			-	
MADE GROUND: whole bricks and concrete.					
	0.6				
	0.0			-	
		D/J	1.0		
MADE ODOLIND, Disabase and a second of the date					
MADE GROUND: Black ashy, gravelly fill of brick, concrete and wood with strong tar odour					
Concrete and wood with strong tar odour					
		D/J	2.6 @		
Trial pit extended to the east by 5m. Brick wall			5m		
encountered at 4.5m along trench. Red brown soft					
sandy CLAY, with slight tar odour noted beyond wall.	2.9				
cara, con, with sight tar odour noted beyond wall.	2.0				
Trial trench terminated at 2.9mbgl and 5m length					

Key: Bulk (Bulk Bag) D. Disturbed V. 40ml Glass Vial W. Water G. Amber Glass Jar / Bottle N. 'N' value PID. Photo Ionisation Detector (ppm) T. Plastic Tub HP. Hand Penetrometer

Contamination Observations During Excavation			PI	D Monitoring	
Depth	Made ground and perched water within the		Depth:	Depth:	Depth:
Observed	gas holder contaminated with tar residues.		PPM:	PPM:	PPM:
Water ingres	s at 2.1m				

NOTES:

Services: Prior to excavation, the trial pit location was scanned with a Cable Avoidance Tool (CAT).

Backfill: The trial pit was backfilled on completion with arisings and levelled to existing ground level.

N/R - Not Required	N/A - Not Applicable	Logged By:	RPS
All depths in metres below ground level;		Approved By:	CRS

TPG

Sheet 1 of 1

Project No:	IV.58.13	Method:	Trial Pit Excavation	Co-ordinates: Ground Level:	N/R N/R
Site:	Pennycroft, Uttoxeter	Plant:	JCB 3CX	Start Date:	08.10.13
Client:	East Staffs BC			Finish Date:	08.10.13

Client: East Staffs BC				Finish D	ate: 08.10.13
Description of Strata	Depth (m)	San Type &	npling Depth (m)	Legend	U100 / N Value Field / Lab. Testing
MADE GROUND: Brown slightly clayey sand with fill of bricks and waste including plastic, polythene, carpet, road cones, kerbstones, rope etc. Above ground tipping.	+2.0m	D/J	+1.0		<u> </u>
MADE GROUND: Tarmac.	0.3				
MADE GROUND: Roadstone with gravel of brick and tarmac planings.	0.6				
MADE GROUND: Sandy clay with gravel of brick, pottery, plastic and asbestos fragments.	1.75				
Grey/black sandy gravelly CLAY with slight tar odour	2.0	D/J	1.8		
Black sandy gravelly soft CLAY					
Brown slightly clayey sand with much gravel	3.0	D/J	3.2		
Trial Pit terminated at 3.2mbgl					
Key: Bulk (Bulk Bag) W. Water PID. Photo Ionisation Detector (ppm)	D. Distu G. Amb T. Plasti	er Glass Ja	ar / Bottle	V. 40ml Gla N. 'N' value HP. Hand I	
Contamination Observations During Excavation				Donth:	PID Monitoring

Contamination Observations During Excavation			PI	D Monitoring	
Depth Observed	2m high waste spoil at surface. Tarmac underlain by sandy fill to 1.75mbgl. Tar stained clays to 3.0mbgl		Depth: PPM:	Depth: PPM:	Depth: PPM:
Seepage at 2	2.0m and strata noted to be damp to base of				

NOTES:

Prior to excavation, the trial pit location was scanned with a Cable Avoidance Tool (CAT). The trial pit was backfilled on completion with arisings and levelled to existing ground level. Services: Backfill:

Trial pit stable.

N/R - Not Required All depths in metres below ground level; Logged By: Approved By: RPS CRS N/A - Not Applicable

TPH

Sheet 1 of 1

Project No:	IV.58.13	Method:	Trial Pit	Co-ordinates:	N/R
Site:	Pennycroft, Uttoxeter		Excavation	Ground Level:	N/R
		Plant:	JCB 3CX	Start Date:	08.10.13
Client:	East Staffs BC			Finish Date:	08.10.13

Description of Strata	Depth (m)	San	npling Depth (m)	Legend	U100 / N Value Field / Lab. Testing
MADE GROUND: Fire residues at surface – ash, burnt wood. Black/brown ash with clinker, brick, and roadstone		D/J	0.4		Field / Lab. Testing
MADE GROUND: Black/brown Ash/clinker with sulphurous odour.	2.9	D/J	071.6		
Dark brown stiff slightly sandy CLAY	3.2				
Brown slightly clayey sand with much gravel	3.4				
Trial Pit terminated at 3.4mbgl					
Kov: Pulk (Pulk Pog)	D. Dieti			V 40ml G	1 \ ('-1

Key:	Bulk (Bulk Bag)	D. Disturbed	V. 40ml Glass Vial
-	W. Water	G. Amber Glass Jar / Bottle	N. 'N' value
	PID. Photo Ionisation Detector (ppm)	T. Plastic Tub	HP. Hand Penetrometer

Contamination Observations During Excavation			PI	D Monitoring	
Depth	Made ground including ash and clinker to		Depth:	Depth:	Depth:
Observed	2.9mbg.		PPM:	PPM:	PPM:
Damp from 3	3.0m.				

NOTES: Services: Prior to excavation, the trial pit location was scanned with a Cable Av Backfill: The trial pit was backfilled on completion with arisings and levelled to Partial collapse at 3.0m and below. N/R - Not Required N/A - Not Applicable All deoths in metres below ground level:			
N/R - Not Require	N/A - Not Applicable	Logged By:	RPS
All depths in metre	s below ground level:	Approved By:	CRS

TPI

Sheet 1 of 1

Project No:	IV.58.13	Method:	Trial Pit Excavation	Co-ordinates: Ground Level:	N/R N/R
Site:	Pennycroft, Uttoxeter	5 1 .			
Client:	East Staffs BC	Plant:	JCB 3CX	Start Date: Finish Date:	08.10.13 08.10.13

Description of Strata MADE GROUND: Red brown roadstone 0.2 MADE GROUND: Clayey sand with brick, plastic, tiles/pottery and concrete gravel of brick and tarmac planings. 1.7 Brown/yellow slightly clayey sand and gravel with slight tar odour. Damp from 2.5m Trial Pit terminated at 3.2mbgl Legend But 00 / N Value Field / Lab. Testing U100 / N Value Field / Lab. Testing Legend But 00 / N Value Field / Lab. Testing D/J 1.0 D/J 1.0 3.2 D/J 1.0	Client. East Stans DC				FIIIISII I	Date: 06.10.13
MADE GROUND: Red brown roadstone 0.2 MADE GROUND: Clayey sand with brick, plastic, titles/pottery and concrete gravel of brick and tarmac planings. 1.7 Brown/yellow slightly clayey sand and gravel with slight tar odour. Damp from 2.5m	Description of Strata	Depth	San	npling	Legend	
MADE GROUND: Clayey sand with brick, plastic, tiles/pottery and concrete gravel of brick and tarmac planings. 1.7 Brown/yellow slightly clayey sand and gravel with slight tar odour. Damp from 2.5m 3.2 D/J 3.2	-	(m)	Type &	Depth (m)	_	Field / Lab. Testing
MADE GROUND: Clayey sand with brick, plastic, tiles/pottery and concrete gravel of brick and tarmac planings. 1.7 Brown/yellow slightly clayey sand and gravel with slight tar odour. Damp from 2.5m 3.2 D/J 1.0	MADE GROUND: Red brown roadstone					
tiles/pottery and concrete gravel of brick and tarmac planings. 1.7 Brown/yellow slightly clayey sand and gravel with slight tar odour. Damp from 2.5m 3.2 D/J 3.2		0.2				
Brown/yellow slightly clayey sand and gravel with slight tar odour. Damp from 2.5m 3.2 D/J 3.2	tiles/pottery and concrete gravel of brick and tarmac	1.7	D/J	1.0		
Trial Pit terminated at 3.2mbgl	tar odour.	3.2	D/J	3.2		
Trial Pit terminated at 3.2mbgl						
	Trial Pit terminated at 3.2mbgl					

Key: Bulk (Bulk Bag) D. Disturbed V. 40ml Glass Vial
W. Water G. Amber Glass Jar / Bottle
PID. Photo Ionisation Detector (ppm) T. Plastic Tub HP. Hand Penetrometer

Contaminatio	n Observations During Excavation		PI	D Monitoring	
Depth	Made ground to1.7mbgl. Slight tar odour		Depth:	Depth:	Depth:
Observed	in sand and gravel from 1.7-3.2mbgl.		PPM:	PPM:	PPM:
Damp from 2	2.5m.				

NO	TE	ς.

Services: Prior to excavation, the trial pit location was scanned with a Cable Avoidance Tool (CAT).

Backfill: The trial pit was backfilled on completion with arisings and levelled to existing ground level.

Trial pit stable.

TPJ

Sheet 1 of 1

Project No:	IV.58.13	Method:	Trial Pit Excavation	Co-ordinates: Ground Level:	N/R N/R
Site:	Pennycroft, Uttoxeter	5 1 .			
Client:	East Staffs BC	Plant:	JCB 3CX	Start Date: Finish Date:	08.10.13 08.10.13

Cilent. East Stairs BC				FINISH Da	ite: 06.10.13
Description of Strata	Depth	San	npling	Legend	U100 / N Value
-	(m)	Type &	Depth (m)		Field / Lab. Testing
MADE GROUND: Slightly clayey sand with gravel of brick and concrete.	0.5	D/J	0.5		
MADE GROUND: Slightly clayey silty sand with waste including brick, plastic, concrete, kerbstones, glass, rebar and polythene.	3.2	D/J	3.2		
Orange brown clayey sand and gravel	3.5	D/J	3.4		
Trial Pit terminated at 3.2mbgl					
Kov: Bulk (Bulk Bag)	D Dietu		•	V 40ml Gla	\

Key:	Bulk (Bulk Bag)	D. Disturbed	V. 40ml Glass Vial
	W. Water	G. Amber Glass Jar / Bottle	N. 'N' value
	PID. Photo Ionisation Detector (ppm)	T. Plastic Tub	HP. Hand Penetrometer

Contaminatio	n Observations During Excavation		PI	D Monitoring	
Depth	Made ground 3.2mbgl – waste/fill.		Depth:	Depth:	Depth:
Observed			PPM:	PPM:	PPM:
Damp from 3	3.2m.				

NO	TE	ς.

Services: Backfill: Prior to excavation, the trial pit location was scanned with a Cable Avoidance Tool (CAT). The trial pit was backfilled on completion with arisings and levelled to existing ground level. Trial pit stable.

N/R - Not Required All depths in metres below ground level; Logged By: Approved By: RPS CRS N/A - Not Applicable

TPK

Sheet 1 of 1

Project No:	IV.58.13	Method:	Trial Pit Excavation	Co-ordinates: Ground Level:	N/R N/R
Site:	Pennycroft, Uttoxeter	5 1 .			
Client:	East Staffs BC	Plant:	JCB 3CX	Start Date: Finish Date:	08.10.13 08.10.13

Description of Strata	Depth	San	npling	Legend	U100 / N Value
Description of Strata	(m)	Type &	Depth (m)	Legena	Field / Lab. Testing
MADE GROUND: Sandy clay with roadstone	0.5	,,,			
MADE GROUND: lack brown slightly sandy soft CLAY with gravel of sandstone and ash. Slight tar odour.	2.1	D/J	1.0		
MADE GROUND: Black sandy gravelly soft CLAY with fragments of wood, brick and concrete. Slight tar odour.	3.0				
Brown/orange very sandy clay with occasional fine to coarse gravel	3.2	D/J	3.1		
Trial Pit terminated at 3.2mbgl					
That it terminated at oznibyi	l .		1	1	

Key:	Bulk (Bulk Bag)	D. Disturbed	V. 40ml Glass Vial
	W. Water	G. Amber Glass Jar / Bottle	N. 'N' value
	PID. Photo Ionisation Detector (ppm)	T. Plastic Tub	HP. Hand Penetrometer

Contamination Observations During Excavation			PI	D Monitoring	
Depth Made ground with ash and tar odour to			Depth:	Depth:	Depth:
Observed	Observed 3.0m.		PPM:	PPM:	PPM:
Seepage at 2.5m					

NOTES: Services: Backfill:	,	the trial pit location was scanned with a ckfilled on completion with arisings and I	,				
N/R - Not Required N/A - Not Applicable Logged By: RPS All depths in metres below ground level; Approved By: CRS							

HDB

Sheet 1 of 1

Project No: IV.58.13 Method: Hand Dug Pit Co-ordinates: Ground Level: N/R Site: Pennycroft, Uttoxeter Plant: Grafter Start Date: 18.11.13 Client: East Staffs BC Finish Date: 18.11.13

Description of Strata	Depth (m)	Sampling Type & Depth (m)		Legend	U100 / N Value Field / Lab. Testing
MADE GROUND: Tarmac underlain by sandy clay with roadstone, brick and concrete fragments	0.5	D/J	0.3		
Pit terminated at 0.5mbgl					

Key: Bulk (Bulk Bag) D. Disturbed V. 40ml Glass Vial
W. Water G. Amber Glass Jar / Bottle N. 'N' value
PID. Photo Ionisation Detector (ppm) T. Plastic Tub HP. Hand Penetrometer

Contaminatio	Contamination Observations During Excavation		PI	D Monitoring	
Depth Made ground with tarmac to 0.5m.			Depth:	Depth:	Depth:
Observed	Observed		PPM:	PPM:	PPM:
Dry					

NOTES:

Services: Prior to excavation, the trial pit location was scanned with a Cable Avoidance Tool (CAT).

Backfill: The pit was backfilled on completion with arisings and levelled to existing ground level.

HDC

Sheet 1 of 1

Project No: IV.58.13 Method: Hand Dug Pit Co-ordinates: Ground Level: N/R Site: Pennycroft, Uttoxeter Plant: Grafter Start Date: 18.11.13 Client: East Staffs BC Finish Date: 18.11.13

Description of Strata	Depth (m)	Sampling Type & Depth (m)		Legend	U100 / N Value Field / Lab. Testing
MADE GROUND: Tarmac underlain by red brown gravel of roadstone, brick, tarmac and concrete	0.5	D/J	0.4		
Pit terminated at 0.5mbgl					

Key: Bulk (Bulk Bag) D. Disturbed V. 40ml Glass Vial W. Water G. Amber Glass Jar / Bottle N. 'N' value

PID. Photo Ionisation Detector (ppm) T. Plastic Tub HP. Hand Penetrometer

Contaminatio	n Observations During Excavation	J	PI	D Monitoring	
Depth Made ground with brick, tarmac gravel to			Depth:	Depth:	Depth:
Observed	0.5m.		PPM:	PPM:	PPM:
Dry					

NOTES:

Services: Prior to excavation, the trial pit location was scanned with a Cable Avoidance Tool (CAT).

Backfill: The pit was backfilled on completion with arisings and levelled to existing ground level.

East Staffs BC

HDD

Sheet 1 of 1

18.11.13

Finish Date:

Project No: IV.58.13 Method: Hand Dug Pit Co-ordinates: N/R Ground Level: N/R

Site: Pennycroft, Uttoxeter

Plant: Grafter Start Date: 18.11.13

Description of Strata	Depth (m)		npling Depth (m)	Legend	U100 / N Value Field / Lab. Testing
MADE GROUND: Tarmac underlain by black sandy gravel of tarmac, roadstone, brick and concrete.	0.5	D/J	0.25		
Pit terminated at 0.5mbgl					

Key: Bulk (Bulk Bag) D. Disturbed V. 40ml Glass Vial
W. Water G. Amber Glass Jar / Bottle
PID. Photo Ionisation Detector (ppm) T. Plastic Tub HP. Hand Penetrometer


Contamination Observations During Excavation			PI	D Monitoring	
Depth Made ground with black tarmac, brick,			Depth:	Depth:	Depth:
Observed	Observed concrete gravel to 0.5m.		PPM:	PPM:	PPM:
Dry					

NOTES:

Client:

Services: Prior to excavation, the trial pit location was scanned with a Cable Avoidance Tool (CAT).

Backfill: The pit was backfilled on completion with arisings and levelled to existing ground level.

IV 58 13-Pennycroft, Dovecote Lane: WS A

Depth	Depth	Strata		Legend	Testing /		
From (m)	To (m)	Description			Samples		
0.00	0.10	MADE GROUND: TARMACADAM with lim	nited dolomite sub-	******			
0.10	0.20	base. MADE GROUND: Light brown and light	t grey yery sandy	******			
0.10	0.20	GRAVEL.	t grey very samuy				
0.20	0.80	MADE GROUND: Dark grey clayey, san		******			
		GRAVEL of concrete, limestone, brick,	clinker, coal, rare	******	0.35-0.70 B		
0.80	3.20	tarmac and many brick cobbles. MADE GROUND: Dark grey, occasionally cl	lavey slightly sandy	*******	0.80-1.00 J2		
0.00	3.20	fine to coarse GRAVEL of ash-clinker, so			0.00 1.00 12		
		sandstone and limestone with occasional		*****			
		wood and tar stain and strong odour no base.	oted from 0.80m to	******			
		base.		******			
				******	2.00 J2		

		Cample tube refusal at 2.20m			3.20 spt = 25/18/32 n=50/150mm		
		Sample tube refusal at 3.20m End of borehole		××××××	11-30/13011111		
		Water strike and SWL at 0.80m					
			ı				
Site: Pennyci Client: Ivy Ho		eter	Log Notes:	atration tost	(blows per 300mm n300)		
Client Refere			HSV = Hand Shear \				
Engineer: GE			CBR = California Be	•	y Mexe Cone Penetrometer (result		
Site Works D	•	•	as percentage)				
Plant: Archw	ay Compe	titor C130 Superheavy	LP = Limited Penetration (HSV/CBR) NP = No penetration (HSV/CBR)				
			B = Bulk Bag, J = Am				

IV 58 13-Pennycroft, Dovecote Lane: WS A1

Depth	Depth	Strata		Legend	Testing /	
From (m)	To (m)	Description			Samples	
0.00	0.10	MADE GROUND: TARMACADAM.		*****		
0.10	0.30	MADE GROUND: Dark grey very sandy fine of concrete, limestone, brick, clinker, coamany brick cobbles.			0.10-0.30 B	
0.30	0.60	MADE GROUND: Dark grey, slightly sar GRAVEL of ash-clinker, some concrete, br limestone. Some possible slag noted.			0.30-0.60 B	
0.60	1.40	Light brown, slightly clayey sandstone, lin SAND + GRAVEL.	nestone and quartz		0.80-1.00 J2	
					1.00-1.50 B	
1.40	3.00	Soft reddish brown very sandy CLAY. Light noted throughout.	tar stain and odour		2.00 J	
		End of borehole			3.00 J	
		BH remained open and dry on completion				
Site: Pennyc		eter	Log Notes:			
Client: Ivy H					(blows per 300mm n300)	
Client Refere			HSV = Hand Shear \			
Engineer: GE Site Works D		1/2012	as percentage)	aring Katio t	by Mexe Cone Penetrometer (result	
		titor C130 Superheavy		ation (HSV//	PRP)	
ridite. At city	dy Compe	attor C130 Superficury	LP = Limited Penetration (HSV/CBR) NP = No penetration (HSV/CBR)			
			B = Bulk Bag, J = An			

IV 58 13-Pennycroft, Dovecote Lane: WS A2

Depth	Depth	Strata		Legend	Testing /		
From (m)	To (m)	Description			Samples		
0.00	0.08	MADE GROUND: TARMACADAM with lim	ited dolomite sub-	*****			
		base.					
0.08	0.28	MADE GROUND: Light brown and light GRAVEL.	t grey very sandy		0.10-0.20 B		
0.28	0.55	MADE GROUND: Dark grey clayey, san		******			
		GRAVEL of concrete, limestone, brick, tarmac and many brick cobbles.	clinker, coal, rare				
0.55	2.00	MADE GROUND: Dark grey, occasionally of		******	0.60-1.00 B		
		fine to coarse GRAVEL of ash-clinker, soi	, ,		0.70 J2		
		sandstone and limestone with occasional wood and tar stain and strong odour no		******			
		base.	ited from 0.75m to	******			
					1.50 J2		

		End of borehole Water strike and SWL at 0.70m					
		Installed 1.00m slotted/1.00m plain pipe					
Site: Pennyc	roft, Uttox		Log Notes:				
Client: Ivy H	•		Spt = Standard Penetration test (blows per 300mm n300)				
Client Refere	•		HSV = Hand Shear Vane (result in kN/m2)				
Engineer: GE		100.0		Bearing Ratio by Mexe Cone Penetrometer (result			
Site Works D	•	0/2013 titor C130 Superheavy	as percentage) LP = Limited Penetr	ation (US)//	CDD\		
Plant. Archiv	ray Compe	titor C130 Superneavy					
			NP = No penetration (HSV/CBR) B = Bulk Bag, J = Amber Glass Jar, T = Plastic Tub				
			D - Balk Bag, J - Alliber Glass sai, T - Flastic Fas				

IV 58 13-Pennycroft, Dovecote Lane: WS B

Depth	Depth	Strata		Legend	Testing /
From (m)	To (m)	Description			Samples
0.00	0.22	MADE GROUND: Dolomite and limestone	GRAVEL with some	XXXXX	
		concrete and brick.		******	
0.22	0.25	MADE GROUND: Red shale GRAVEL.		******	
0.45	3.20	MADE GROUND: Dark grey, occasionally clayey, slightly sandy fine to coarse GRAVEL of ash-clinker, some concrete, brick, sandstone and limestone with occasional brick cobbles. Rare wood and tar stain and strong odour noted from 0.75m to base. Possible rare slag noted.			0.25-0.50 J2
					1.00 J2
					2.00 J2
		Much concrete gravel below 2.90m Sample tube refusal at 3.20m			3.00 J2 3.20 spt = 9/13/21/29 n=50/150mm
		End of borehole Water strike and SWL at 0.75m Installed 2.00m slotted/0.40m plain pipe			
Site: Pennyc	roft, Uttox		Log Notes:		
Client: Ivy Ho Client Refere Engineer: GE Site Works D	ouse ence: N/A : Date: 08/10		HSV = Hand Shear \	/ane (result i aring Ratio b ation (HSV/C n (HSV/CBR)	y Mexe Cone Penetrometer (result

IV 58 13-Pennycroft, Dovecote Lane: WS C

Depth	Depth	Strata		Legend	Testing /
From (m)	To (m)	Description		2080	Samples
0.00	0.09	MADE GROUND: TARMACADAM.		×××××	- Campies
0.09	0.16	MADE GROUND: Red and grey fine to coarse red shale GRAVEL			0.10-0.16 J2
		with some tarmac and limestone. Sub-base.			
0.16 0.45 MADE GROUND: Dark brown and red sandy bi			ndy brick FILL with		
		much concrete, clinker and limestone gravel.			
0.45				*******	0.50-0.70 J2
			me concrete, brick,	******	
			brick cobbles. Rare	*******	
		wood and light tar stain noted.		XXXXXX	
1.00	1.70 Firm becoming soft reddish brown very sandy CLAY with muclimestone, sandstone and sandstone gravel.				
			ıl.		
1.70	70 2.10 Dark grey very clayey, gravelly fine to coarse SAND. Tar stai			000000000000000000000000000000000000000	1.70-1.90 J2
1.70	2.10	and smell noted.			1.70 1.30 12
2.10	3.00	Soft reddish brown sandy CLAY with black tar stain and odour to 2.35m.		10000000000	2.10-2.30 J2
					2.50-3.00 J2
		e deficients.	1.61		
		End of borehole Borehole remained open and dry on completion			
	Backfilled with arisings		letion		
Site: Pennyc	roft Littox		Log Notes:		
Client: Ivy House			Spt = Standard Penetration test (blows per 300mm n300)		
Client Reference: N/A			HSV = Hand Shear Vane (result in kN/m²)		
Engineer: GE			CBR = California Bearing Ratio by Mexe Cone Penetrometer (result		
Site Works Date: 08/10/2013			as percentage)		
Plant: Archway Competitor C130 Superheavy			LP = Limited Penetration (HSV/CBR)		
			NP = No penetration (HSV/CBR)		
			B = Bulk Bag, J = Amber Glass Jar, T = Plastic Tub		

IV 58 13-Pennycroft, Dovecote Lane: WS D

Depth	Depth	Strata		Legend	Testing /	
From (m)	To (m)	Description			Samples	
0.00	0.10	MADE GROUND: TARMACADAM.		******	·	
0.10	0.28	MADE GROUND: Grey fine sandy to coarse dolomite, limestone, brick and concrete.		0.10-0.28 J2		
0.28	1.60	MADE GROUND: Red sandy brick FILL with some brick and concrete gravel.			1.00-1.60 B	
		Sample tube refusal at 1.60m	Sample tube refusal at 1.60m			
		End of borehole Borehole remained open and dry on compl Backfilled with arisings				
Site: Pennyc Client: Ivy Ho Client Refero Engineer: GE Site Works I Plant: Archw	ouse ence: N/A E Date: 08/10		HSV = Hand Shear \	Vane (result i aring Ratio b ration (HSV/C n (HSV/CBR)	oy Mexe Cone Penetrometer (result	

IV 58 13-Pennycroft, Dovecote Lane: WS E

Depth	Depth	Strata		Legend	Testing /	
From (m)	To (m)	Description			Samples	
0.00	0.08	MADE GROUND: TARMACADAM.		*******		
0.08	0.27	MADE GROUND: Dolomite sub-base.		******		
0.27	0.60	MADE GROUND: Grey slightly clayey, very s GRAVEL of limestone, brick, concrete, son slate.			0.30-0.60 B	
0.60	2.20	MADE GROUND: Dark brown and brown C fine to coarse gravel of brick, limestone, co		1.00-1.50 B		
2.20	3.80	Brown very sandy, slightly gravelly CLAY vand odour below 2.80m.	frown very sandy, slightly gravelly CLAY with black tar stain nd odour below 2.80m.			
3.80	3.95	Black slightly clayey limestone and sandsto	ne SAND + GRAVEL.		3.80 J	
	_	End of borehole Borehole remained open and dry on compl Installed 3.00m slotted/0.90m plain pipe	etion			
Client: Ivy Ho Client Refere Engineer: GE Site Works D	Site: Pennycroft, Uttoxeter Client: Ivy House Client Reference: N/A Engineer: GE Site Works Date: 09/10/2013		Log Notes: Spt = Standard Penetration test (blows per 300mm n300) HSV = Hand Shear Vane (result in kN/m²) CBR = California Bearing Ratio by Mexe Cone Penetrometer (result as percentage)			
riant. AICHW	Plant: Archway Competitor C130 Superheavy			ation (HSV/C n (HSV/CBR) nber Glass Ja		

IV 58 13-Pennycroft, Dovecote Lane: WS F

Depth	Depth	Strata		Legend	Testing /
From (m)	To (m)	Description			Samples
0.00	0.15	MADE GROUND: Limestone GRAVEL over d	olomite.	******	
0.15	0.60	MADE GROUND: Dark grey, very sandy fin- of concrete, clinker, brick and some coal. B			0.20-0.50 B
0.60	0.90	MADE GROUND: Grey concrete SAND + GR.	AVEL.		
0.90	3.00	MADE GROUND: Brown and dark brown s GRAVEL of brick, limestone, concrete and c	•		1.00-1.50 B
3.00	3.40	Soft grey and brown very sandy CLAY.			3.00-3.40 B
3.40	3.80	Brown limestone and sandstone SAND + GF	RAVEL.		
3.80	4.45	Stiff reddish brown sandy CLAY.			3.80-4.00 B 4.00 spt = 3/7/5/5/6/7 n=23
		End of borehole Borehole remained open and dry on compl	etion		
Site: Pennycroft, Uttoxeter Client: Ivy House Client Reference: N/A Engineer: GE Site Works Date: 09/10/2013 Plant: Archway Competitor C130 Superheavy		Log Notes: Spt = Standard Pend HSV = Hand Shear V	/ane (result i aring Ratio b ation (HSV/C n (HSV/CBR)	by Mexe Cone Penetrometer (result	

IV 58 13-Pennycroft, Dovecote Lane: WS G

Depth	Depth	Strata		Legend	Testing /
From (m)	To (m)	Description	manually CAND	· · · · · · · · · · · · · · · · · · ·	Samples
0.00	0.10	MADE GROUND: Turf over topsoil. Brown gravelly SAND. MADE GROUND: Black ash-clinker FILL with much brick, some limestone, sandstone, concrete and coal.			0.50-1.00 B
1.70	2.00	MADE GROUND: Soft light brown sandy C brick gravel.	CLAY FILL with much		1.70-2.00 B
2.00	2.40	MADE GROUND: Dark grey clayey limest SAND + GRAVEL with much brick, clinker and sheen but no obvious odour.	-	2.00-2.40 B	
2.40	2.70	Soft grey and brown sandy CLAY.		******	2.40-2.70 B
2.70	3.00	Brown limestone and sandstone SAND + G	RAVEL.		
		End of borehole		51515151515151515151515151515151515151	
		BH remained open and dry on completion			
Client: Ivy H Client Refer Engineer: Gl Site Works I	Site: Pennycroft, Uttoxeter Client: Ivy House Client Reference: N/A Engineer: GE Site Works Date: 10/10/2013 Plant: Archway Competitor C130 Superheavy		HSV = Hand Shear \	Vane (result i earing Ratio b ration (HSV/C on (HSV/CBR)	by Mexe Cone Penetrometer (result

IV 58 13-Pennycroft, Dovecote Lane: WS H

Depth	Depth	Strata		Legend	Testing /		
From (m)	To (m)	Description			Samples		
0.00	0.17	MADE GROUND: Turf over topsoil. Brow	wn gravelly fine to	******	- Carrier Carr		
		coarse SAND.	5 ,				
0.17	0.30	MADE GROUND: Red clayey, brick FILL wi	th much limestone,	*******			
		sandstone, rare glass and clinker gravel.					
0.30	1.70	MADE GROUND: Dark brown clayey fine t					
		much fine to coarse gravel of brick, coal, li	mestone, sandstone				
		and clinker.					
				1.00 B			
				1.00 В			
			8				
			\otimes				
1.70	2.70		ense becoming very dense reddish brown very clayey slightly				
		sandy limestone and sandstone GRAVEL.					
					2.00 B		
					2.00 spt = 8/8/7/8/10/10 n=35		
					2.70 spt =		
					7/9/11/13/17/10/50mm		
					n=50/275mm		
		End of borehole					
		Borehole remained open and dry on comp	letion				
	6	Backfilled with arisings	T				
Site: Pennyo		eter	Log Notes:	tuatio - t - 1	(blasses non 200mm 200)		
Client: Ivy H Client Refer			Spt = Standard Pene HSV = Hand Shear V		(blows per 300mm n300)		
Engineer: Gl					oy Mexe Cone Penetrometer (result		
Site Works		0/2013	as percentage)	ai iiig ivatio t	by Mexe cone renetrometer (result		
	•	titor C130 Superheavy	LP = Limited Penetr	ation (HSV/0	CBR)		
	, ,	,	NP = No penetratio				
			B = Bulk Bag, J = Am				
			I				

IV 58 13-Pennycroft, Dovecote Lane: WS I

Depth	Depth	Strata		Legend	Testing /	
From (m)	To (m) 0.13	Description MADE GROUND: Turf over topsoil. Brown g	rrayally CAND	******	Samples	
0.00	0.70	MADE GROUND: Turr over topsoil. Brown g MADE GROUND: Grey brick, concrete an with rare possible asbestos tile.	,		0.20-0.50 B	
0.70	1.00	MADE GROUND: Light brown sandy CLAY F	MADE GROUND: Light brown sandy CLAY FILL.			
1.00	1.30	MADE GROUND: Dark grey sandy fine to clinker, brick, limestone and concrete.	coarse GRAVEL of		1.00-1.30 B	
1.30	1.50	MADE GROUND: Black ash-clinker FILL. Tar	stain and odour.		1.30-1.50 B	
1.50	3.00	Dark grey very sandy CLAY with much odour and slight stain throughout.	Dark grey very sandy CLAY with much gravel at base. Tar addour and slight stain throughout.			
		End of borehole Water strike and SWL at 1.30m Installed 0.20m bentonite/1.80m slotted/1	.00m plain pipe			
Site: Pennyo Client: Ivy H Client Refer Engineer: GE Site Works I	ouse ence: N/A E Date: 10/10	eter 0/2013	Log Notes: Spt = Standard Pend HSV = Hand Shear N CBR = California Be as percentage)	/ane (result i aring Ratio b	y Mexe Cone Penetrometer (result	
Plant: Archw	vay Compe	titor C130 Superheavy	LP = Limited Penetr NP = No penetratio B = Bulk Bag, J = Am	n (HSV/CBR)		

IV 58 13-Pennycroft, Dovecote Lane: WS J

Depth	Depth	Strata		Legend	Testing /		
From (m)	To (m)	Description		-0	Samples		
0.00	0.10	MADE GROUND: Turf over topsoil. Reddish	brown gravelly fine	XXXXXXX	0.00-0.50 B		
		to coarse SAND.	<i>o</i> ,				
0.10	1.30	MADE GROUND: Very dense brown fine to		******			
		much fine to coarse gravel of brick, coal, lin					
		and rare clinker. Some possible asbestos til	e noted.	********			
			*******	0.50-1.00 B			

					1.00 spt = 11/13/11/39 n=50/150		
				*******	1.30 spt = 50		
		End of borehole					
		Borehole remained open and dry on compl	etion				
	6	Backfilled with arisings					
Site: Pennyci		eter	Log Notes:				
Client: Ivy Ho			Spt = Standard Penetration test (blows per 300mm n300) HSV = Hand Shear Vane (result in kN/m²)				
Engineer: GE			CBR = California Bearing Ratio by Mexe Cone Penetrometer (result				
Site Works D		0/2013	as percentage)				
		titor C130 Superheavy	LP = Limited Penetr	ation (HSV/C	CBR)		
		·	NP = No penetratio				
			B = Bulk Bag, J = Am	nber Glass Ja	r, T = Plastic Tub		

IV 58 13-Pennycroft, Dovecote Lane: WS K

Depth	Depth	Strata		Legend	Testing /	
From (m)	To (m)	Description			Samples	
0.00	0.12	MADE GROUND: TARMACADAM.		******		
0.12	0.33	MADE GROUND: Tarmac and limestone GR		<u> </u>	0.12-0.30 J	
0.33	0.45	MADE GROUND: Fine grey limestone COBE				
0.45	0.70	MADE GROUND: Sandy brick FILL wit limestone and clinker.				
0.70	1.70	MADE GROUND: Brown very sandy CL/ limestone, sandstone, rare coal and clinker	1.00-1.50 B			
1.70	2.10	Relic Topsoil. Dark brown organic, slightly (SAND.	clayey fine to coarse		1.70-2.00 B	
2.10	2.50		Dense brown limestone and sandstone SAND + GRAVEL.			
		End of borehole BH remained open and dry on completion Installed 2.00m slotted/0.50m plain pipe				
Site: Pennyc Client: Ivy H Client Refere Engineer: GE Site Works I Plant: Archw	ouse ence: N/A E Date: 10/10		HSV = Hand Shear \	/ane (result i aring Ratio b ation (HSV/C n (HSV/CBR)	by Mexe Cone Penetrometer (result	

IV 58 13-Pennycroft, Dovecote Lane: WS L

Depth	Depth	Strata		Legend	Testing /		
From (m)	To (m)	Description			Samples		
0.00	0.12	MADE GROUND: TARMACADAM.					
0.12	0.33	MADE GROUND: Tarmac and limestone GRAVEL sub-base.			0.12-0.30 J		
0.45	0.70	MADE GROUND: Sandy brick FILL wit limestone and clinker.	h some concrete,				
0.70	1.70	MADE GROUND: Dark brown and brown C	CLAV FILL with much	******			
0.70	1.70	fine to coarse gravel of brick, limestone, co		1.30-1.50 B			
1.70	2.10	Soft grey and brown sandy CLAY.		****	2.0-2.10 B		
2.10	2.50	Dense brown limestone and sandstone SAN					
		End of borehole		*****			
		BH remained open and dry on completion					
Site: Pennyc	roft Littor	Installed 2.00m slotted/0.50m plain pipe	Log Notes:				
Client: Ivy H		etei	Spt = Standard Penetration test (blows per 300mm n300)				
Client Refere			HSV = Hand Shear V				
Engineer: GE				aring Ratio b	y Mexe Cone Penetrometer (result		
Site Works D			as percentage)	(1.01.44	20.0		
Plant: Archw	ay Compe	titor C130 Superheavy	LP = Limited Penetr NP = No penetratio				
			B = Bulk Bag, J = Am				

APPENDIX E

Richard Sutton Ivy House Environmental Ltd Scotland Farm Ockbrook Derby DE72 3RX

QTS Environmental Ltd

Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN **t:** 01622 850410

russell.jarvis@gtsenvironmental.com

QTS Environmental Report No: 13-17089

Site Reference: Pennycroft, Uttoxeter

Project / Job Ref: IV.58.13

Order No: None Supplied

Sample Receipt Date: 10/10/2013

Sample Scheduled Date: 10/10/2013

Report Issue Number:

Reporting Date: 20/11/2013

Authorised by:

Russell Jarvis

Director

On behalf of QTS Environmental Ltd

Authorised by:

Kevin Old Director

On behalf of QTS Environmental Ltd

co CQ

Soil Analysis Certificate						
QTS Environmental Report No: 13-17089	Date Sampled	08/10/13	08/10/13	08/10/13	08/10/13	08/10/13
Ivy House Environmental Ltd	Time Sampled	None Supplied				
Site Reference: Pennycroft, Uttoxeter	TP / BH No	TPA	TPA	TPB1A	TPG	TPG
Project / Job Ref: IV.58.13	Additional Refs	None Supplied	None Supplied	None Supplied	+1.00m	None Supplied
Order No: None Supplied	Depth (m)	1.40 @ 4.00	1.00 @ 7.00	2.60 @ 5.00	None Supplied	1.60
Reporting Date: 20/11/2013	QTSE Sample No	82124	82125	82126	82127	82128

Determinand	Unit	MDL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025				Detected	
Asbestos Matrix (S)	Material Type	N/a	ISO17025				Loose fibres	
Asbestos Type (S)	PLM Result	N/a	ISO17025				Chrysotile	
pH	pH Units	N/a	MCERTS				7.8	
Total Cyanide	mg/kg	< 2	NONE				< 2	
Complex Cyanide	mg/kg	< 2	NONE	< 2	< 2			< 2
Free Cyanide	mg/kg	< 2	NONE	< 2	< 2			< 2
Thiocyanate as SCN	mg/kg	< 3	NONE	< 3	< 3			< 3
Total Sulphate as SO ₄	mg/kg	< 200	NONE				1995	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	NONE				0.10	
Organic Matter	%	< 0.1	NONE				8.5	
Arsenic (As)	mg/kg	< 2	MCERTS	2	16		5	29
W/S Boron	mg/kg	< 1	NONE	1.9	1.7			1.5
Cadmium (Cd)	mg/kg	< 0.5	MCERTS	< 0.5	0.5		2.9	0.6
Chromium (Cr)	mg/kg	< 2	MCERTS	49	17		31	32
Chromium (hexavalent)	mg/kg	< 2	NONE				< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	11	54		205	76
Lead (Pb)	mg/kg	< 3	MCERTS	18	280		594	221
Mercury (Hg)	mg/kg	< 1	NONE	< 1	1		4.7	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	51	27		26	17
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3		< 3	< 3
Zinc (Zn)	mg/kg	< 3	MCERTS	67	97		439	181
Total Phenols (monohydric)	mg/kg	< 2	NONE				< 2	
EPH (C10 - C40)	mg/kg	< 6	MCERTS			< 6	707	

Analytical results are expressed on a dry weight basis where samples are dried at less than 30° C Analysis carried out on the dried sample is corrected for the stone content

Soil Analysis Certificate						
QTS Environmental Report No: 13-17089	Date Sampled	08/10/13	08/10/13	08/10/13	08/10/13	08/10/13
Ivy House Environmental Ltd	Time Sampled	None Supplied				
Site Reference: Pennycroft, Uttoxeter	TP / BH No	TPG	TPI	TPI	TPH	TPH
Project / Job Ref: IV.58.13	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	3.20	1.00	3.20	0.70 - 1.60	3.40
Reporting Date: 20/11/2013	QTSE Sample No	82129	82130	82131	82132	82133

Determinand	Unit	MDL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025		None Detected		None Detected	
Asbestos Matrix (S)	Material Type	N/a	NONE					
Asbestos Type (S)	PLM Result	N/a	ISO17025					
pH	pH Units	N/a	MCERTS		7.7		7.7	
Total Cyanide	mg/kg	< 2	NONE		< 2		< 2	
Complex Cyanide	mg/kg	< 2	NONE	< 2				
Free Cyanide	mg/kg	< 2	NONE	< 2				
Thiocyanate as SCN	mg/kg	< 3	NONE	< 3				
Total Sulphate as SO ₄	mg/kg	< 200	NONE		1376		1083	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	NONE		0.08		0.06	
Organic Matter	%	< 0.1	NONE		3		2.7	
Arsenic (As)	mg/kg	< 2	MCERTS	5	11		6	
W/S Boron	mg/kg	< 1	NONE	< 1				
Cadmium (Cd)	mg/kg	< 0.5	MCERTS	< 0.5	0.8		< 0.5	
Chromium (Cr)	mg/kg	< 2	MCERTS	8	19		13	
Chromium (hexavalent)	mg/kg	< 2	NONE		< 2		< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	5	58		74	
Lead (Pb)	mg/kg	< 3	MCERTS	14	105		104	
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1		< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	6	21		22	
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3		< 3	
Zinc (Zn)	mg/kg	< 3	MCERTS	30	165		61	·
Total Phenols (monohydric)	mg/kg	< 2	NONE		< 2		< 2	
EPH (C10 - C40)	mg/kg	< 6	MCERTS			< 6	200	< 6

Analytical results are expressed on a dry weight basis where samples are dried at less than 30° C Analysis carried out on the dried sample is corrected for the stone content

Soil Analysis Certificate											
QTS Environmental Report No: 13-17089	Date Sampled	08/10/13	08/10/13	08/10/13							
Ivy House Environmental Ltd	Time Sampled	None Supplied	None Supplied	None Supplied							
Site Reference: Pennycroft, Uttoxeter	TP / BH No	TPJ	TPK	TPK							
Project / Job Ref: IV.58.13	Additional Refs	None Supplied	None Supplied	None Supplied							
Order No: None Supplied	Depth (m)	0.50	2.10	3.20							
Reporting Date: 20/11/2013	QTSE Sample No	82134	82135	82136							

Determinand	Unit	MDL	Accreditation				
Asbestos Screen (S)	N/a	N/a	ISO17025	None Detected			
Asbestos Matrix (S)	Material Type	N/a	NONE				
Asbestos Type (S)	PLM Result	N/a	ISO17025				
pH	pH Units	N/a	MCERTS	7.1			
Total Cyanide	mg/kg	< 2	NONE	< 2			
Complex Cyanide	mg/kg	< 2	NONE		< 2	< 2	
Free Cyanide	mg/kg	< 2	NONE		< 2	< 2	
Thiocyanate as SCN	mg/kg	< 3	NONE		< 3	< 3	
Total Sulphate as SO ₄	mg/kg	< 200	NONE	777			
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	NONE	0.03			
Organic Matter	%	< 0.1	NONE	4			
Arsenic (As)	mg/kg	< 2	MCERTS	9	32	16	
W/S Boron	mg/kg	< 1	NONE		< 1	< 1	
Cadmium (Cd)	mg/kg	< 0.5	MCERTS	< 0.5	< 0.5	< 0.5	
Chromium (Cr)	mg/kg	< 2	MCERTS	17	26	19	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2			
Copper (Cu)	mg/kg	< 4	MCERTS	32	117	16	
Lead (Pb)	mg/kg	< 3	MCERTS	95	354	27	
Mercury (Hg)	mg/kg	< 1	NONE	< 1	1.2	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	17	20	27	
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	
Zinc (Zn)	mg/kg	< 3	MCERTS	118	83	63	
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2			
EPH (C10 - C40)	mg/kg	< 6	MCERTS	50			

Analytical results are expressed on a dry weight basis where samples are dried at less than 30° C Analysis carried out on the dried sample is corrected for the stone content

Soil Analysis Certificate - Speciated PAHs											
QTS Environmental Report No: 13-17089	Date Sampled	08/10/13	08/10/13	08/10/13	08/10/13						
Ivy House Environmental Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied						
Site Reference: Pennycroft, Uttoxeter	TP / BH No	TPG	TPI	TPH	TPJ						
Project / Job Ref: IV.58.13	Additional Refs	+1.00m	None Supplied	None Supplied	None Supplied						
Order No: None Supplied	Depth (m)	None Supplied	1.00	0.70 - 1.60	0.50						
Reporting Date: 20/11/2013	QTSE Sample No	82127	82130	82132	82134						

Determinand	Unit	MDL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Acenaphthylene	mg/kg	< 0.1	MCERTS	0.11	< 0.1	< 0.1	< 0.1	
Acenaphthene	mg/kg	< 0.1	MCERTS	0.56	< 0.1	< 0.1	< 0.1	
Fluorene	mg/kg	< 0.1	MCERTS	0.43	< 0.1	< 0.1	< 0.1	
Phenanthrene	mg/kg	< 0.1	MCERTS	5.04	0.57	0.68	0.76	
Anthracene	mg/kg	< 0.1	MCERTS	1.41	0.18	0.21	0.26	
Fluoranthene	mg/kg	< 0.1	MCERTS	11.80	1.75	2.51	2.02	
Pyrene	mg/kg	< 0.1	MCERTS	9.51	1.49	2.14	1.69	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	4.84	0.92	1.41	1.29	
Chrysene	mg/kg	< 0.1	MCERTS	4.48	0.81	1.13	1.25	
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	5.80	1.11	1.82	1.78	
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	2.66	0.49	0.57	0.77	
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	4.32	0.80	1.42	1.63	
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	2.73	0.50	0.90	0.91	
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	0.28	< 0.1	0.12	< 0.1	
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	2.61	0.48	0.69	0.69	
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	56.5	9.1	13.6	13.1	

Soil Analysis Certificate - TPH CWG Banded											
QTS Environmental Report No: 13-17089	Date Sampled	08/10/13	08/10/13	08/10/13	08/10/13	08/10/13					
Ivy House Environmental Ltd	Time Sampled	None Supplied									
Site Reference: Pennycroft, Uttoxeter	TP / BH No	TPA	TPA	TPG	TPG	TPK					
Project / Job Ref: IV.58.13	Additional Refs	None Supplied									
Order No: None Supplied	Depth (m)	1.40 @ 4.00	1.00 @ 7.00	1.60	3.20	2.10					
Reporting Date: 20/11/2013	QTSE Sample No	82124	82125	82128	82129	82135					

Determinand	Unit	MDL	Accreditation					
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	12.60	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10	mg/kg	< 1	NONE	< 1	69	< 1	< 1	< 1
Aliphatic >C10 - C12	mg/kg	< 1	NONE	< 1	119	9	< 1	< 1
Aliphatic >C12 - C16	mg/kg	< 1	NONE	< 1	606	37	< 1	< 1
Aliphatic >C16 - C21	mg/kg	< 1	NONE	< 1	1716	62	< 1	< 1
Aliphatic >C21 - C34	mg/kg	< 6	NONE	< 6	810	47	< 6	< 6
Aliphatic (C5 - C34)	mg/kg	< 12	NONE	< 12	3331	154	< 12	< 12
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	0.12	11.90	0.06	< 0.01	< 0.01
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	0.48	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10	mg/kg	< 1	NONE	< 1	88	< 1	< 1	< 1
Aromatic >C10 - C12	mg/kg	< 1	NONE	< 1	104	3	< 1	< 1
Aromatic >C12 - C16	mg/kg	< 1	NONE	< 1	238	12	< 1	< 1
Aromatic >C16 - C21	mg/kg	< 1	NONE	< 1	705	35	< 1	< 1
Aromatic >C21 - C35	mg/kg	< 6	NONE	< 6	515	44	< 6	< 6
Aromatic (C5 - C35)	mg/kg	< 12	NONE	< 12	1661	93	< 12	< 12
Total >C5 - C35	3/ 3		NONE	< 24	4993	248	< 24	< 24

Soil Analysis Certificate - TPH CWG Banded										
QTS Environmental Report No: 13-17089	Date Sampled	08/10/13								
Ivy House Environmental Ltd	Time Sampled	None Supplied								
Site Reference: Pennycroft, Uttoxeter	TP / BH No	TPK								
Project / Job Ref: IV.58.13	Additional Refs	None Supplied								
Order No: None Supplied	Depth (m)	3.20								
Reporting Date: 20/11/2013	QTSE Sample No	82136								

Determinand	Unit	MDL	Accreditation			
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01		
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aliphatic >C8 - C10	mg/kg	< 1	NONE	< 1		
Aliphatic >C10 - C12	mg/kg	< 1	NONE	< 1		
Aliphatic >C12 - C16	mg/kg	< 1	NONE	< 1		
Aliphatic >C16 - C21	mg/kg	< 1	NONE	< 1		
Aliphatic >C21 - C34	mg/kg	< 6	NONE	< 6		
Aliphatic (C5 - C34)	mg/kg	< 12	NONE	< 12		
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01		
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aromatic >C8 - C10	mg/kg	< 1	NONE	< 1		
Aromatic >C10 - C12	mg/kg	< 1	NONE	< 1		
Aromatic >C12 - C16	mg/kg	< 1	NONE	< 1		
Aromatic >C16 - C21	mg/kg	< 1	NONE	< 1		
Aromatic >C21 - C35	mg/kg	< 6	NONE	< 6		·
Aromatic (C5 - C35)	mg/kg	< 12	NONE	< 12		
Total >C5 - C35	31 3		NONE	< 24		

Soil Analysis Certificate - BTEX / MTBE						
QTS Environmental Report No: 13-17089	Date Sampled	08/10/13	08/10/13	08/10/13	08/10/13	08/10/13
Ivy House Environmental Ltd	Time Sampled	None Supplied				
Site Reference: Pennycroft, Uttoxeter	TP / BH No	TPA	TPA	TPG	TPG	TPK
Project / Job Ref: IV.58.13	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	1.40 @ 4.00	1.00 @ 7.00	1.60	3.20	2.10
Reporting Date: 20/11/2013	QTSE Sample No	82124	82125	82128	82129	82135

Determinand	Unit	MDL	Accreditation					
Benzene	ug/kg	< 2	MCERTS	121	11887	55	< 2	< 2
Toluene	ug/kg	< 5	MCERTS	12	478	18	< 5	< 5
Ethylbenzene	ug/kg	< 10	MCERTS	16	24871	50	< 10	< 10
p & m-xylene	ug/kg	< 10	MCERTS	18	16134	112	< 10	< 10
o-xylene	ug/kg	< 10	MCERTS	15	13639	83	< 10	< 10

Soil Analysis Certificate - BTEX / MTBE											
QTS Environmental Report No: 13-17089	Date Sampled	08/10/13									
Ivy House Environmental Ltd	Time Sampled	None Supplied									
Site Reference: Pennycroft, Uttoxeter	TP / BH No	TPK									
Project / Job Ref: IV.58.13	Additional Refs	None Supplied									
Order No: None Supplied	Depth (m)	3.20									
Reporting Date: 20/11/2013	QTSE Sample No	82136									

Determinand	Unit	MDL	Accreditation			
Benzene	ug/kg	< 2	MCERTS	< 2		
Toluene	ug/kg	< 5	MCERTS	< 5		
Ethylbenzene	ug/kg	< 10	MCERTS	< 10		
p & m-xylene	ug/kg	< 10	MCERTS	< 10		
o-xylene	ug/kg	< 10	MCERTS	< 10		

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic QTS Environmental Report No: 13-17089	Date Sampled	08/10/13	08/10/13	08/10/13	08/10/13	08/10/13
Ivy House Environmental Ltd	Time Sampled	None Supplied				
Site Reference: Pennycroft, Uttoxeter	TP / BH No	TPA	TPA	TPB1A	TPG	TPG
Project / Job Ref: IV.58.13	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	1.40 @ 4.00	1.00 @ 7.00	2.60 @ 5.00	1.60	3.20
Reporting Date: 20/11/2013	QTSE Sample No	82124	82125	82126	82128	82129

Determinand	Unit	MDL	Accreditation					
Dichlorodifluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Vinyl Chloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Chloromethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10		
Chloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromomethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10		
			MCERTS		< 5	< 5		
Trichlorofluoromethane	ug/kg	< 5		< 5				
1,1-Dichloroethene	ug/kg	< 5	ISO17025	< 5	< 5	< 5		
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
trans-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,1-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
cis-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
2,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Chloroform	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Bromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
1,1,1-Trichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
1,1-Dichloropropene	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Carbon Tetrachloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
1,2-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Benzene	ug/kg	< 2	MCERTS	121	11890	71	55	
1,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Trichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Bromodichloromethane	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Dibromomethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
TAME	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
cis-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Toluene	ug/kg	< 5	MCERTS	12	478	< 5	18	
trans-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1,2-Trichloroethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
1,3-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Tetrachloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Dibromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
1,2-Dibromoethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Chlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
1,1,1,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Ethyl Benzene	ug/kg	< 10	MCERTS	16	24870	12	50	
m,p-Xylene	ug/kg	< 10	MCERTS	18	16130	< 10		
o-Xylene	ug/kg	< 10	MCERTS	15	13640	< 10		
Styrene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Bromoform	ug/kg	< 10	MCERTS	< 10	< 10	< 10		
Isopropylbenzene	ug/kg	< 5	MCERTS	< 5	377	< 5		
1,1,2,2-Tetrachloroethane	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 5		
	5, 5	< 5			< 5	< 5		
1,2,3-Trichloropropane	ug/kg		MCERTS	< 5				
n-Propylbenzene	ug/kg	< 5	MCERTS	< 5	321	< 5		
Bromobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
2-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,3,5-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	316	< 5	177	
4-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
tert-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,2,4-Trimethylbenzene	ug/kg	< 5	MCERTS	11	32620	< 5	197	< 5
sec-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
p-Isopropyltoluene	ug/kg	< 5	MCERTS	< 5	149	< 5		
1,3-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,4-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
n-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,2-Dichlorobenzene		< 5	MCERTS	< 5	< 5	< 5		
	ug/kg	< 10		< 10	< 10	< 10		
1,2-Dibromo-3-chloropropane	ug/kg		MCERTS					
Hexachlorobutadiene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Soil Analysis Certificate - Volatile Organic Compounds (VOC)
QTS Environmental Report No: 13-17089 Date Samp
Ivy House Environmental Ltd Time Samp Date Sampled 08/10/13 08/10/13 08/10/13 08/10/13 Time Sampled None Supplied None Supplied None Supplied None Supplied Site Reference: Pennycroft, Uttoxeter Project / Job Ref: IV.58.13 Order No: None Supplied Reporting Date: 20/11/2013 TP / BH No TPI TPH TPK TPK Additional Refs None Supplied None Supplied None Supplied None Supplied Depth (m)
QTSE Sample No 3.20 3.40 2.10 3.20

Order No: None Supplied			Depth (m)	3.20	3.40	2.10	3.20	
Reporting Date: 20/11/2	.013	Ü	QTSE Sample No	82131	82133	82135	82136	
Determinand	Unit	MDL	Accreditation					
Dichlorodifluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Vinyl Chloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Chloromethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Chloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromomethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Trichlorofluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1-Dichloroethene	ug/kg	< 5	ISO17025	< 5	< 5	< 5	< 5	
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
trans-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
cis-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
2,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Chloroform	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1,1-Trichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1-Dichloropropene	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Carbon Tetrachloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
1,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Trichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromodichloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Dibromomethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
TAME	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
cis-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
trans-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1,2-Trichloroethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
1,3-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Tetrachloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Dibromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2-Dibromoethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Chlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1,1,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Ethyl Benzene	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
m,p-Xylene o-Xylene	ug/kg ug/kg	< 10 < 10	MCERTS MCERTS	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	
Styrene	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 10	< 5	
Bromoform	ug/kg ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Isopropylbenzene	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1,2,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2,3-Trichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
n-Propylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
2-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,3,5-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
4-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
tert-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2,4-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
sec-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
p-Isopropyltoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,3-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,4-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
n-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
.,2-Dibromo-3-chloropropane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Hexachlorobutadiene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Analytical results are expressed on	a dry weight basis where sar	nples are	dried at less than 30°C					

Soil Analysis Certificate - Semi Volatile Org	Soil Analysis Certificate - Semi Volatile Organic Compounds (SVOC)											
QTS Environmental Report No: 13-17089	Date Sampled	08/10/13	08/10/13	08/10/13	08/10/13	08/10/13						
Ivy House Environmental Ltd	Time Sampled	None Supplied										
Site Reference: Pennycroft, Uttoxeter	TP / BH No	TPA	TPA	TPB1A	TPG	TPG						
Project / Job Ref: IV.58.13	Additional Refs	None Supplied										
Order No: None Supplied	Depth (m)	1.40 @ 4.00	1.00 @ 7.00	2.60 @ 5.00	1.60	3.20						
Reporting Date: 20/11/2013	QTSE Sample No	82124	82125	82126	82128	82129						

Determinand	Unit	MDL	Accreditation					
Phenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2,4-Trichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nitrobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
0-Cresol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-chloroethoxy)methane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-chloroethyl)ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chlorophenol	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dimethylphenol	mg/kg	< 0.15	ISO17025	< 0.15	< 0.15	< 0.15	0.26	< 0.15
Isophorone	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachloroethane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
p-Cresol	mg/kg	< 0.15	MCERTS	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
2,4,6-Trichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylnaphthalene	mg/kg	< 0.1	MCERTS	0.1	3.5	< 0.1	2.3	< 0.1
Hexachlorocyclopentadiene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dimethyl phthalate	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloroanaline	mg/kg	< 0.2	NONE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
4-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chlorophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Bromophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Diethyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.1	< 0.1	< 0.1
Dibenzofuran	mg/kg	< 0.1	MCERTS	0.1	10.3	< 0.1	6.6	0.1
Azobenzene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibutyl phthalate	mg/kg	< 0.15	ISO17025	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
Carbazole	mg/kg	< 0.1	ISO17025	0.2	4.8	0.1	1.9	0.1
bis(2-ethylhexyl)phthalate	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Benzyl butyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-octyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Analytical results are expressed on a dry weight basis where samples are dried at less than $30\ensuremath{^{\circ}\text{C}}$

Soil Analysis Certificate - Semi Volatile Org	Soil Analysis Certificate - Semi Volatile Organic Compounds (SVOC)										
QTS Environmental Report No: 13-17089	Date Sampled	08/10/13	08/10/13	08/10/13	08/10/13						
Ivy House Environmental Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied						
Site Reference: Pennycroft, Uttoxeter	TP / BH No	TPI	TPH	TPK	TPK						
Project / Job Ref: IV.58.13	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied						
Order No: None Supplied	Depth (m)	3.20	3.40	2.10	3.20						
Reporting Date: 20/11/2013	QTSE Sample No	82131	82133	82135	82136						

Determinand	Unit	MDL	Accreditation				
Phenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
1,2,4-Trichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Nitrobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
0-Cresol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-chloroethoxy)methane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-chloroethyl)ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
2-Chlorophenol	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dimethylphenol	mg/kg	< 0.15	ISO17025	< 0.15	< 0.15	< 0.15	< 0.15
Isophorone	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Hexachloroethane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
p-Cresol	mg/kg	< 0.15	MCERTS	< 0.15	< 0.15	< 0.15	< 0.15
2,4,6-Trichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylnaphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.2	< 0.1
Hexachlorocyclopentadiene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
Dimethyl phthalate	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloroanaline	mg/kg	< 0.2	NONE	< 0.2	< 0.2	< 0.2	< 0.2
4-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
4-Chlorophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
3-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
4-Bromophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
Diethyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzofuran	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.2	< 0.1
Azobenzene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Dibutyl phthalate	mg/kg	< 0.15	ISO17025	< 0.15	< 0.15	< 0.15	< 0.15
Carbazole	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	0.2	< 0.1
bis(2-ethylhexyl)phthalate	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Benzyl butyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-octyl phthalate	mg/kg		MCERTS	< 0.1	< 0.1	< 0.1	< 0.1

Tel: 01622 850410

Leachate Analysis Certificate											
QTS Environmental Report No: 13-17089	Date Sampled	08/10/13									
Ivy House Environmental Ltd	Time Sampled	None Supplied									
Site Reference: Pennycroft, Uttoxeter	TP / BH No	TPB									
Project / Job Ref: IV.58.13	Additional Refs	None Supplied									
Order No: None Supplied	Depth (m)	1.40 @ 3.00									
Reporting Date: 20/11/2013	QTSE Sample No	82137									

Determinand	Unit	MDL	Accreditation		
Complex Cyanide	ug/l	< 5	NONE	< 5	
Free Cyanide	ug/l	< 5	NONE	< 5	
Thiocyanate as SCN	ug/l	< 10	NONE	< 10	
Arsenic	ug/l	< 10	NONE	< 10	
Boron	ug/l	< 50	NONE	59	
Cadmium	ug/l	< 0.5	NONE	< 0.5	
Chromium	ug/l	< 5	NONE	< 5	
Copper	ug/l	< 10	NONE	< 10	
Lead	ug/l	< 5	NONE	< 5	
Mercury	ug/l	< 0.05	NONE	< 0.05	
Nickel	ug/l	< 7	NONE	< 7	
Selenium	ug/l	< 5	NONE	< 5	
Zinc	ug/l	< 5	NONE	< 5	

Leachate Analysis Certificate - TPH CWG Banded										
QTS Environmental Report No: 13-17089	Date Sampled	08/10/13								
Ivy House Environmental Ltd	Time Sampled	None Supplied								
Site Reference: Pennycroft, Uttoxeter	TP / BH No	TPB								
Project / Job Ref: IV.58.13	Additional Refs	None Supplied								
Order No: None Supplied	Depth (m)	1.40 @ 3.00								
Reporting Date: 20/11/2013	QTSE Sample No	82137								

Determinand	Unit	MDL	Accreditation			
Aliphatic >C5 - C6	ug/l	< 10	NONE	< 10		
Aliphatic >C6 - C8	ug/l	< 10	NONE	< 10		
Aliphatic >C8 - C10	ug/l	< 10	NONE	< 10		
Aliphatic >C10 - C12	ug/l	< 10	NONE	< 10		
Aliphatic >C12 - C16	ug/l	< 10	NONE	< 10		
Aliphatic >C16 - C21	ug/l	< 10	NONE	< 10		
Aliphatic >C21 - C34	ug/l	< 10	NONE	< 10		
Aliphatic (C5 - C34)	ug/l	< 70	NONE	< 70		
Aromatic >C5 - C7	ug/l	< 10	NONE	43		
Aromatic >C7 - C8	ug/l	< 10	NONE	< 10		
Aromatic >C8 - C10	ug/l	< 10	NONE	21		
Aromatic >C10 - C12	ug/l	< 10	NONE	40		
Aromatic >C12 - C16	ug/l	< 10	NONE	111		
Aromatic >C16 - C21	ug/l	< 10	NONE	72		
Aromatic >C21 - C35	ug/l	< 10	NONE	< 10		
Aromatic (C5 - C35)	ug/l	< 70	NONE	287		
Total >C5 - C35	ug/l	< 140	NONE	287		

4480

Leachate Analysis Certificate - BTEX / MTBE									
QTS Environmental Report No: 13-17089	Date Sampled	08/10/13							
Ivy House Environmental Ltd	Time Sampled	None Supplied							
Site Reference: Pennycroft, Uttoxeter	TP / BH No	TPB							
Project / Job Ref: IV.58.13	Additional Refs	None Supplied							
Order No: None Supplied	Depth (m)	1.40 @ 3.00							
Reporting Date: 20/11/2013	QTSE Sample No	82137							

Determinand	Unit	MDL	Accreditation			
Benzene	ug/l	< 1	ISO17025	43		
Toluene	ug/l	< 5	ISO17025	< 5		
Ethylbenzene	ug/l	< 5	ISO17025	20		
p & m-xylene	ug/l	< 10	ISO17025	< 10		
o-xylene	ug/l	< 5	ISO17025	< 5		

Reporting Date: 20/11/2	2013	,	QTSE Sample No	82137	<u> </u>		
Determinand	Unit	MDL	Accreditation				1
Dichlorodifluoromethane	ug/l	< 5	ISO17025	< 5	Ī	Ī	
Vinyl Chloride	ug/l	< 5	ISO17025	< 5			
Chloromethane		< 5	ISO17025	< 5			
Chloroethane	ug/l	< 5	ISO17025	< 5			
Bromomethane	ug/l	< 5	ISO17025	< 5			
Trichlorofluoromethane	ug/l	< 5	ISO17025	< 5			
1,1-Dichloroethene	ug/l	< 5	ISO17025	< 5			
MTBE	ug/l	< 10	IS017025	< 10			
trans-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5			
1,1-Dichloroethane	ug/l	< 5	ISO17025	< 5			
cis-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5			
2,2-Dichloropropane	ug/l	< 5	ISO17025	< 5			
Chloroform	ug/l	< 5	ISO17025	< 5			
Bromochloromethane	ug/l	< 10	ISO17025	< 10			
1,1,1-Trichloroethane	ug/l	< 5	ISO17025	< 5			
1,1-Dichloropropene	ug/l	< 5	ISO17025	< 5			
Carbon Tetrachloride	ug/l	< 5	ISO17025	< 5			
1,2-Dichloroethane	ug/l	< 10	ISO17025	< 10			
Benzene	,	< 1	ISO17025	43			
1,2-Dichloropropane		< 5	ISO17025	< 5			
Trichloroethene	ug/l	< 5	ISO17025	< 5			
Bromodichloromethane	ug/l	< 5	ISO17025	< 5			
Dibromomethane	ug/l	< 5	ISO17025	< 5			
TAME	ug/l	< 5	ISO17025	< 5			
cis-1,3-Dichloropropene	-	< 5	ISO17025	< 5			
Toluene	ug/l	< 5	ISO17025	< 5			
trans-1,3-Dichloropropene	ug/l	< 5	ISO17025	< 5			
1,1,2-Trichloroethane	,	< 10	ISO17025	< 10			
1,3-Dichloropropane	ug/l	< 5	ISO17025	< 5			
Tetrachloroethene	ug/l	< 5	ISO17025	< 5			
Dibromochloromethane	ug/l	< 5	ISO17025	< 5			
1,2-Dibromoethane		< 5	IS017025 IS017025	< 5			
Chlorobenzene 1,1,1,2-Tetrachloroethane	ug/l ug/l	< 5 < 5	ISO17025	< 5 < 5			
Ethyl Benzene	ug/l	< 5	ISO17025	20			
m,p-Xylene	-	< 10	ISO17025	< 10			
o-Xylene	ug/l	< 5	ISO17025	< 5			
Styrene	ug/l	< 5	ISO17025	< 5			
Bromoform	ug/l	< 10	ISO17025	< 10			
Isopropylbenzene	ug/l	< 5	ISO17025	< 5			
1,1,2,2-Tetrachloroethane	ug/l	< 10	ISO17025	< 10			
1,2,3-Trichloropropane	ug/l	< 5	ISO17025	< 5			
n-Propylbenzene	ug/l	< 5	ISO17025	< 5			
Bromobenzene	ug/l	< 5	ISO17025	< 5			
2-Chlorotoluene	ug/l	< 5	ISO17025	< 5			
1,3,5-Trimethylbenzene	ug/l	< 5	ISO17025	< 5			
4-Chlorotoluene	ug/l	< 5	ISO17025	< 5			
tert-Butylbenzene		< 5	ISO17025	< 5			
1,2,4-Trimethylbenzene	ug/l	< 5	ISO17025	< 5			
sec-Butylbenzene	ug/l	< 5	ISO17025	< 5			
p-Isopropyltoluene	ug/l	< 5	ISO17025	< 5			
1,3-Dichlorobenzene	ug/l	< 5	ISO17025	< 5			
1,4-Dichlorobenzene	ug/l	< 5	ISO17025	< 5			
n-Butylbenzene	ug/l	< 5	ISO17025	< 5			
1,2-Dichlorobenzene	ug/l	< 5	ISO17025	< 5			
.,2-Dibromo-3-chloropropane	ug/l	< 10	ISO17025	< 10			
Hexachlorobutadiene	ug/l	< 5	ISO17025	< 5			

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volati	Leachate Analysis Certificate - Semi Volatile Organic Compounds (SVOC)									
QTS Environmental Report No: 13-17089	Date Sampled	08/10/13								
Ivy House Environmental Ltd	Time Sampled	None Supplied								
Site Reference: Pennycroft, Uttoxeter	TP / BH No	TPB								
Project / Job Ref: IV.58.13	Additional Refs	None Supplied								
Order No: None Supplied	Depth (m)	1.40 @ 3.00								
Reporting Date: 20/11/2013	QTSE Sample No	82137								

Determinand	Unit	MDL	Accreditation				1
				. 0.1	1	1	1
Phenol	ug/l	< 0.1	NONE	< 0.1			
1,2,4-Trichlorobenzene	ug/l	< 0.1	NONE	< 0.1			
2-Nitrophenol	ug/l	< 0.1	NONE	< 0.1			
Nitrobenzene	ug/l	< 0.1	NONE	< 0.1			
0-Cresol	ug/l	< 0.1	NONE	< 0.1			
bis(2-chloroethoxy)methane	ug/l	< 0.1	NONE	< 0.1			
bis(2-chloroethyl)ether	ug/l	< 0.1	NONE	< 0.1			
2,4-Dichlorophenol	ug/l	< 0.1	NONE	< 0.1			
2-Chlorophenol	ug/l	< 0.1	NONE	< 0.1			
1,3-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1			
1,4-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1			
1,2-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1			
2,4-Dimethylphenol	ug/l	< 0.1	NONE	< 0.1			
Isophorone	ug/l	< 0.1	NONE	< 0.1			
Hexachloroethane	ug/l	< 0.1	NONE	< 0.1			
p-Cresol	ug/l	< 0.1	NONE	< 0.1			
2,4,6-Trichlorophenol	ug/l	< 0.1	NONE	< 0.1			
2,4,5-Trichlorophenol	ug/l	< 0.1	NONE	< 0.1			
2-Nitroaniline	ug/l	< 0.1	NONE	< 0.1			
4-Chloro-3-methylphenol	ug/l	< 0.1	NONE	< 0.1			
2-Methylnaphthalene	ug/l	< 0.1	NONE	< 0.1			
Hexachlorocyclopentadiene	ug/l	< 0.1	NONE	< 0.1			
Hexachlorobutadiene	ug/l	< 0.1	NONE	< 0.1			
2,6-Dinitrotoluene	ug/l	< 0.1	NONE	< 0.1			
Dimethyl phthalate	ug/l	< 0.1	NONE	< 0.1			
2-Chloronaphthalene	ug/l	< 0.1	NONE	< 0.1			
4-Chloroanaline	ug/l	< 0.1	NONE	< 0.1			
4-Nitrophenol	ug/l	< 0.1	NONE	< 0.1			
4-Chlorophenyl phenyl ether	ug/l	< 0.1	NONE	< 0.1			
3-Nitroaniline	ug/l	< 0.1	NONE	< 0.1			
4-Nitroaniline	ug/l	< 0.1	NONE	< 0.1			
4-Bromophenyl phenyl ether	ug/l	< 0.1	NONE	< 0.1			
Hexachlorobenzene	ug/l	< 0.1	NONE	< 0.1			
2,4-Dinitrotoluene	ug/l	< 0.1	NONE	< 0.1			
Diethyl phthalate	ug/l	< 0.1	NONE	< 0.1			
Dibenzofuran	ug/l	< 0.1	NONE	13.2			
Azobenzene	ug/l	< 0.1	NONE	< 0.1			
Dibutyl phthalate	ug/l	< 0.1	NONE	< 0.1			
Carbazole	ug/l	< 0.1	NONE	49.1			
bis(2-ethylhexyl)phthalate	ug/l	< 0.1	NONE	< 0.1			
Benzyl butyl phthalate	ug/l	< 0.1	NONE	< 0.1			
Di-n-octyl phthalate	ug/l	< 0.1	NONE	< 0.1			

Soil Analysis Certificate - Sample Descriptions	
QTS Environmental Report No: 13-17089	
Ivy House Environmental Ltd	
Site Reference: Pennycroft, Uttoxeter	
Project / Job Ref: IV.58.13	
Order No: None Supplied	
Reporting Date: 20/11/2013	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
82124	TPA	None Supplied	1.40 @ 4.00	16.9	Red sandy clay with stones
82125	TPA	None Supplied	1.00 @ 7.00	16.4	Black loamy clay with rubble
82126	TPB1A	None Supplied	2.60 @ 5.00		Red loamy clay
82127	TPG	+1.00m	None Supplied	9	Brown sandy loam with stones and vegetation
82128	TPG	None Supplied	1.60		Black loamy gravel
82129	TPG	None Supplied	3.20	13.6	Light brown gravelly clay with stones
82130	TPI	None Supplied	1.00	14.7	Grey loamy gravel with brick and stones
82131	TPI	None Supplied	3.20	13.1	Light brown clayey gravel with stones
82132	TPH	None Supplied	0.70 - 1.60	11.3	Grey loamy gravel with rubble and stones
82133	TPH	None Supplied	3.40	12.5	Grey sandy clay with stones
82134	TPJ	None Supplied	0.50	13.5	Brown sandy loam
82135	TPK	None Supplied	2.10	22.6	Grey loamy gravel with rubble
82136	TPK	None Supplied	3.20	11.3	Red sandy clay

Insufficient sample ^{I/S} Unsuitable Sample ^{U/S}

Soil Analysis Certificate - Methodology & Miscellaneous Information QTS Environmental Report No: 13-17089
Ivy House Environmental Ltd
Site Reference: Pennycroft, Uttoxeter
Project / Job Ref: IV.58.13
Order No: None Supplied
Reporting Date: 20/11/2013

Matrix	Analysed	Determinand	Brief Method Description	Method
	On	200	2.13. 1.03.103. 2.033. [2.10]	No
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1.5 diphenylcarbazide followed by colorimetry	E016
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E021
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by turbidimeter	E020
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E023
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E011
Soil	D	Loss on Ignition @ 450°C	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
			Determination of organic matter by oxidising with potassium dichromate followed by titration with iron	
Soil Soil	D AR	Organic Matter	(II) sulphate Determination of pH by addition of water followed by electrometric measurement	E011 E007
Soil	D		Determination of phosphorus by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of phosphorus by adda-regia digestion followed by ICP-OES Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	D		Determination of water soluble sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	AR	Sulphide Sulphide	Determination of culphide by acidification and heating to liberate hydrogen culphide, trapped in an	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia, potassium iodide/iodate followed by ICP- IOES	E002
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E011
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E009
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E009
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E010
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E009
Soil	AR	EPH (C10 - C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of hydrocarbons C6-C10 by headspace GC-MS	E001
Soil	AR	EPH TEXAS	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	TPH CWG	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	TPH LQM	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	EPH (with florisil cleanup)	Determination of acetone/hexane extractable hydrocarbons with florisil cleanup step by GC-FID	E004
	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AK	Li II i loduct ib		

Key

D Dried AR As Received

Richard Sutton
Ivy House Environmental Ltd
Scotland Farm
Ockbrook
Derby
DE72 3RX

QTS Environmental Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 13-17152

Site Reference: Pennycroft, Uttoxeter

Project / Job Ref: IV.58.13

Order No: None Supplied

Sample Receipt Date: 14/10/2013

Sample Scheduled Date: 14/10/2013

Report Issue Number: 1

Reporting Date: 22/10/2013

Authorised by:

Russell Jarvis Director

On behalf of QTS Environmental Ltd

Authorised by:

Kevin Old Director

On behalf of QTS Environmental Ltd

co CQ

Soil Analysis Certificate						
QTS Environmental Report No: 13-17152	Date Sampled	09/10/13	09/10/13	09/10/13	09/10/13	09/10/13
Ivy House Environmental Ltd	Time Sampled	None Supplied				
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSA1	WSA2	WSB	WSC	WSC
Project / Job Ref: IV.58.13	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	2.00	0.70	2.00	2.10 - 2.30	2.50 - 3.00
Reporting Date: 22/10/2013	QTSE Sample No	82473	82474	82475	82476	82477

Determinand	Unit	MDL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025			None Detected		
pH	pH Units	N / a	MCERTS			8.7		
Total Cyanide	mg/kg	< 2	NONE			< 2		
Complex Cyanide	mg/kg	< 2	NONE	< 2	< 2		< 2	< 2
Free Cyanide	mg/kg	< 2	NONE	< 2	< 2		< 2	< 2
Thiocyanate as SCN	mg/kg	< 3	NONE	< 3	< 3		< 3	< 3
Total Sulphate as SO ₄	mg/kg	< 200	NONE			7471		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	NONE			1.38		
Organic Matter	%	< 0.1	NONE			2.5		
Arsenic (As)	mg/kg	< 2	MCERTS	6	24	12	5	< 2
W/S Boron	mg/kg	< 1	NONE	1.9	4.1		3.8	3.6
Cadmium (Cd)	mg/kg	< 0.5	MCERTS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chromium (Cr)	mg/kg	< 2	MCERTS	20	34	16	51	53
Chromium (hexavalent)	mg/kg	< 2	NONE			< 2		
Copper (Cu)	mg/kg	< 4	MCERTS	12	148	73	16	12
Lead (Pb)	mg/kg	< 3	MCERTS	15	121	35	6	6
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	18	57	21	51	53
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	< 3	< 3
Zinc (Zn)	mg/kg	< 3	MCERTS	52	94	48	61	62
Total Phenols (monohydric)	mg/kg	< 2	NONE			< 2		
EPH (C10 - C40)	mg/kg	< 6	MCERTS	311		358		

Analytical results are expressed on a dry weight basis where samples are dried at less than 30° C Analysis carried out on the dried sample is corrected for the stone content Subcontracted analysis $^{(S)}$

Soil Analysis Certificate						
QTS Environmental Report No: 13-17152	Date Sampled	09/10/13	09/10/13	09/10/13	09/10/13	09/10/13
Ivy House Environmental Ltd	Time Sampled	None Supplied				
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSD	WSE	WSG	WSG	WSH
Project / Job Ref: IV.58.13	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	1.00 - 1.60	3.70	1.15	2.00 - 2.40	1.00
Reporting Date: 22/10/2013	QTSE Sample No	82478	82479	82480	82481	82482

Determinand	Unit	MDL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025	None Detected	None Detected			None Detected
pH	pH Units	N/a	MCERTS	7.9	7.2			7.1
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2			< 2
Complex Cyanide	mg/kg	< 2	NONE			< 2	< 2	
Free Cyanide	mg/kg	< 2	NONE			< 2	< 2	
Thiocyanate as SCN	mg/kg	< 3	NONE			< 3	< 3	
Total Sulphate as SO ₄	mg/kg	< 200	NONE	2691	898			2637
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	NONE	0.48	0.21			1.02
Organic Matter	%	< 0.1	NONE	4.3	2			5.1
Arsenic (As)	mg/kg	< 2	MCERTS	3	4	20	26	13
W/S Boron	mg/kg	< 1	NONE			2.1	1.5	
Cadmium (Cd)	mg/kg	< 0.5	MCERTS	1.6	< 0.5	0.5	0.6	0.9
Chromium (Cr)	mg/kg	< 2	MCERTS	14	12	20	12	26
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2			< 2
Copper (Cu)	mg/kg	< 4	MCERTS	12	10	54	40	62
Lead (Pb)	mg/kg	< 3	MCERTS	29	21	256	58	197
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	10	11	21	17	30
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	< 3	< 3
Zinc (Zn)	mg/kg	< 3	MCERTS	58	46	121	59	208
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2			< 2
EPH (C10 - C40)	mg/kg	< 6	MCERTS	901	< 6			116

Analytical results are expressed on a dry weight basis where samples are dried at less than 30° C Analysis carried out on the dried sample is corrected for the stone content Subcontracted analysis $^{(S)}$

Soil Analysis Certificate									
QTS Environmental Report No: 13-17152	Date Sampled	09/10/13							
Ivy House Environmental Ltd	Time Sampled	None Supplied							
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WS7							
Project / Job Ref: IV.58.13	Additional Refs	None Supplied							
Order No: None Supplied	Depth (m)	0.50 - 1.00							
Reporting Date: 22/10/2013	QTSE Sample No	82483							

Determinand	Unit	MDL	Accreditation			
Asbestos Screen (S)	N/a	N/a	ISO17025	None Detected		
pH	pH Units	N/a	MCERTS	7.5		
Total Cyanide	mg/kg	< 2	NONE	< 2		
Complex Cyanide	mg/kg	< 2	NONE			
Free Cyanide	mg/kg	< 2	NONE			
Thiocyanate as SCN	mg/kg	< 3	NONE			
Total Sulphate as SO ₄	mg/kg	< 200	NONE	1012		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	NONE	0.25		
Organic Matter	%	< 0.1	NONE	1.3		
Arsenic (As)	mg/kg	< 2	MCERTS	5		
W/S Boron	mg/kg	< 1	NONE			
Cadmium (Cd)	mg/kg	< 0.5	MCERTS	1.3		
Chromium (Cr)	mg/kg	< 2	MCERTS	12		
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2		
Copper (Cu)	mg/kg	< 4	MCERTS	11		
Lead (Pb)	mg/kg	< 3	MCERTS	32		
Mercury (Hg)	mg/kg	< 1	NONE	< 1		
Nickel (Ni)	mg/kg	< 3	MCERTS	11		
Selenium (Se)	mg/kg	< 3	NONE	< 3		
Zinc (Zn)	mg/kg	< 3	MCERTS	114		
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2		
EPH (C10 - C40)			MCERTS			

Analytical results are expressed on a dry weight basis where samples are dried at less than 30° C Analysis carried out on the dried sample is corrected for the stone content Subcontracted analysis $^{(S)}$

Soil Analysis Certificate - Speciated PAHs									
Date Sampled	09/10/13	09/10/13	09/10/13	09/10/13	09/10/13				
Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied				
TP / BH No	WSB	WSD	WSE	WSH	WS7				
Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied				
Depth (m)	2.00	1.00 - 1.60	3.70	1.00	0.50 - 1.00				
QTSE Sample No	82475	82478	82479	82482	82483				
	Time Sampled TP / BH No Additional Refs Depth (m)	Time Sampled None Supplied TP / BH No WSB Additional Refs None Supplied Depth (m) 2.00	Time Sampled None Supplied None Supplied TP / BH No WSB WSD Additional Refs None Supplied None Supplied Depth (m) 2.00 1.00 - 1.60	Time Sampled None Supplied None Supplied None Supplied TP / BH No WSB WSD WSE Additional Refs None Supplied None Supplied None Supplied Depth (m) 2.00 1.00 - 1.60 3.70	Time Sampled None Supplied None Supplied None Supplied None Supplied None Supplied TP / BH No WSB WSD WSE WSH Additional Refs None Supplied None Supplied None Supplied None Supplied None Supplied Depth (m) 2.00 1.00 - 1.60 3.70 1.00				

Determinand	Unit	MDL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	1.80	0.30	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	0.59	0.33	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	0.69	0.46	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	1.23	0.59	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	5.73	6.43	< 0.1	0.20	0.62
Anthracene	mg/kg	< 0.1	MCERTS	1.49	1.23	< 0.1	< 0.1	0.17
Fluoranthene	mg/kg	< 0.1	MCERTS	6.14	10.20	< 0.1	0.77	1.26
Pyrene	mg/kg	< 0.1	MCERTS	5.50	8.08	< 0.1	0.67	1.01
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	2.02	3.96	< 0.1	0.35	0.56
Chrysene	mg/kg	< 0.1	MCERTS	2.04	4.11	< 0.1	0.32	0.54
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	2.05	4.43	< 0.1	0.47	0.68
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.74	1.95	< 0.1	0.21	0.25
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	1.52	3.27	< 0.1	0.37	0.55
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	0.92	2.01	< 0.1	0.25	0.38
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	0.16	0.13	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.79	1.80	< 0.1	0.25	0.32
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	33.4	49.3	< 1.6	3.9	6.3

Soil Analysis Certificate - TPH CWG Banded									
QTS Environmental Report No: 13-17152	Date Sampled	09/10/13	09/10/13	09/10/13	09/10/13	09/10/13			
Ivy House Environmental Ltd	Time Sampled	None Supplied							
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSA2	WSC	WSC	WSG	WSG			
Project / Job Ref: IV.58.13	Additional Refs	None Supplied							
Order No: None Supplied	Depth (m)	0.70	2.10 - 2.30	2.50 - 3.00	1.15	2.00 - 2.40			
Reporting Date: 22/10/2013	QTSE Sample No	82474	82476	82477	82480	82481			

Determinand	Unit	MDL	Accreditation					
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10	mg/kg	< 1	NONE	< 1	25	< 1	< 1	< 1
Aliphatic >C10 - C12	mg/kg	< 1	NONE	2	57	< 1	< 1	< 1
Aliphatic >C12 - C16	mg/kg	< 1	NONE	33	177	< 1	11	< 1
Aliphatic >C16 - C21	mg/kg	< 1	NONE	119	154	< 1	59	< 1
Aliphatic >C21 - C34	mg/kg	< 6	NONE	155	109	< 6	136	< 6
Aliphatic (C5 - C34)	mg/kg	< 12	NONE	309	522	< 12	206	< 12
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	0.05	1.87	0.17	0.03	< 0.01
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	2.36	0.06	< 0.05	< 0.05
Aromatic >C8 - C10	mg/kg	< 1	NONE	< 1	20	< 1	< 1	< 1
Aromatic >C10 - C12	mg/kg	< 1	NONE	2	31	< 1	< 1	< 1
Aromatic >C12 - C16	mg/kg	< 1	NONE	16	117	< 1	6	< 1
Aromatic >C16 - C21	mg/kg	< 1	NONE	81	159	< 1	55	< 1
Aromatic >C21 - C35	mg/kg	< 6	NONE	156	191	< 6	192	< 6
Aromatic (C5 - C35)	mg/kg	< 12	NONE	254	523	< 12	253	< 12
Total >C5 - C35	3/ 3		NONE	563	1045	< 24	459	< 24

Soil Analysis Certificate - BTEX / MTBE						
QTS Environmental Report No: 13-17152	Date Sampled	09/10/13	09/10/13	09/10/13	09/10/13	09/10/13
Ivy House Environmental Ltd	Time Sampled	None Supplied				
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSA2	WSC	WSC	WSG	WSG
Project / Job Ref: IV.58.13	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	0.70	2.10 - 2.30	2.50 - 3.00	1.15	2.00 - 2.40
Reporting Date: 22/10/2013	QTSE Sample No	82474	82476	82477	82480	82481

Determinand	Unit	MDL	Accreditation					
Benzene	ug/kg	< 2	MCERTS	45	1866	166	33	< 2
Toluene	ug/kg	< 5	MCERTS	10	2357	57	13	< 5
Ethylbenzene	ug/kg	< 10	MCERTS	19	831	13	< 10	< 10
p & m-xylene	ug/kg	< 10	MCERTS	< 10	16098	96	23	< 10
o-xylene	ug/kg	< 10	MCERTS	< 10	2372	37	< 10	< 10

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C

Soil Analysis Certificate - Volatile Organic Compounds (VOC)									
QTS Environmental Report No: 13-17152	Date Sampled	09/10/13	09/10/13	09/10/13	09/10/13	09/10/13			
Ivy House Environmental Ltd	Time Sampled	None Supplied							
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSA1	WSA2	WSB	WSC	WSC			
Project / Job Ref: IV.58.13	Additional Refs	None Supplied							
Order No: None Supplied	Depth (m)	2.00	0.70	2.00	2.10 - 2.30	2.50 - 3.00			
Reporting Date: 22/10/2013	QTSE Sample No	82473	82474	82475	82476	82477			

Determinand	Unit	MDL	Accreditation					
Dichlorodifluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Vinyl Chloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Chloromethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Chloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromomethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10		
Trichlorofluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,1-Dichloroethene	ug/kg	< 5	ISO17025	< 5	< 5	< 5		
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
trans-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,1-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
cis-1,2-Dichloroethene		< 5	MCERTS		< 5	< 5	< 5	
	ug/kg		MCERTS	< 5				
2,2-Dichloropropane	ug/kg	< 5		< 5	< 5	< 5	< 5	
Chloroform	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1,1-Trichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1-Dichloropropene	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Carbon Tetrachloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,2-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Benzene	ug/kg	< 2	MCERTS	11	45	466	1866	
1,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Trichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Bromodichloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Dibromomethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
TAME	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
cis-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Toluene	ug/kg	< 5	MCERTS	< 5	10	34	2357	57
trans-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
1,1,2-Trichloroethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
1,3-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Tetrachloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Dibromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2-Dibromoethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Chlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,1,1,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Ethyl Benzene	ug/kg	< 10	MCERTS	< 10	19	25		. 13
m,p-Xylene	ug/kg	< 10	MCERTS	< 10	< 10	47	16100	
o-Xylene	ug/kg	< 10	MCERTS	< 10	< 10	51	2372	
Styrene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromoform	ug/kg	< 10	MCERTS	< 10	< 10	< 10		
Isopropylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,1,2,2-Tetrachloroethane	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,2,3-Trichloropropane	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
n-Propylbenzene	5, 5,	< 5	MCERTS	< 5 < 5	< 5	< 5		
	ug/kg	< 5						
Bromobenzene	ug/kg		MCERTS	< 5	< 5	< 5		
2-Chlorotoluene	ug/kg	< 5 < 5	MCERTS	< 5	< 5	< 5	< 5	
1,3,5-Trimethylbenzene	ug/kg		MCERTS	< 5	< 5	16	1323	12
4-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
tert-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,2,4-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	31	3251	
sec-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
p-Isopropyltoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,3-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,4-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
n-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
l,2-Dibromo-3-chloropropane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C

Soil Analysis Certificate - Volatile Organic Compounds (VOC)
QTS Environmental Report No: 13-17152 Date Samp
Ivy House Environmental Ltd Time Samp Date Sampled 09/10/13 09/10/13 09/10/13 Time Sampled None Supplied None Supplied None Supplied TP / BH No Additional Refs Depth (m) QTSE Sample No Site Reference: Pennycroft, Uttoxeter Project / Job Ref: IV.58.13 Order No: None Supplied Reporting Date: 22/10/2013 WSD WSG WSG None Supplied None Supplied None Supplied 2.00 - 2.40 1.00 - 1.60 1.15 82480 82481 82478

Determinand								
Dichlorodiflucromethane	Determinand	Unit	MDL	Accreditation				
Viniv Choloide		ua/ka			< 5	< 5	< 5	
Chloromethane								
Chitorethane		5, 5						
Bronnomethane								
Trichicorluoromentane		5, 5						
1,1-Dichloroethene								
MTBE		5, 5						
Tansi-12-Dichirorethene Ug/kg < 5 MCRTS < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5								
1,1-Dichloroethane								
Control Cont								
2,2-Dichloropropane u_0/kg 5 MCERTS C S C S								
Chloroforn Ug/Ka 5 MCERTS 5 5 5	cis-1,2-Dichloroethene							
Bromochloromethane	2,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1,1-Trichloroethane	Chloroform	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1,1-Trichloroptopene ug/kg < 5 MCERTS < 5 < 5 < 5 1,1-Drichloroptopene ug/kg < 10 MCERTS < 5 < 5 < 5 2,2-Drichloroptopene ug/kg < 5 MCERTS < 5 < 5 < 5 3,2-Drichloroptopene ug/kg < 5 MCERTS < 5 < 5 < 5 3,2-Drichloroptopene ug/kg < 5 MCERTS 9 33 < 2 1,2-Drichloroptopane ug/kg < 5 MCERTS 9 33 < 2 1,2-Drichloroptopane ug/kg < 5 MCERTS 9 33 < 2 1,2-Drichloroptopane ug/kg < 5 MCERTS < 5 < 5 < 5 5 Finchloroptopane ug/kg < 5 MCERTS < 5 < 5 < 5 5 MCERTS < 5 < 5 < 5 < 5 6 MCERTS < 5 < 5 < 5 < 5 7 MCERTS < 5 < 5 < 5 < 5 8 MCERTS < 5 < 5 < 5 < 5 9 MCERTS < 5 < 5 < 5 < 5 9 MCERTS < 5 < 5 < 5 < 5 1 MCERTS < 5 < 5 < 5 < 5 < 5 1 MCERTS < 5 < 5 < 5 < 5 < 5 1 MCERTS < 5 < 5 < 5 < 5 < 5 1 MCERTS < 5 < 5 < 5 < 5 < 5 1 MCERTS < 5 < 5 < 5 < 5 < 5 1 MCERTS < 5 < 5 < 5 < 5 < 5 < 5 1 MCERTS < 5 < 5 < 5 < 5 < 5 < 5 1 MCERTS < 5 < 5 < 5 < 5 < 5 < 5 1 MCERTS < 5 < 5 < 5 < 5 < 5 < 5 < 5 1 MCERTS < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 1 MCERTS < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Bromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1-Dichloropropene			< 5	MCERTS	< 5	< 5	< 5	
Carbon Tetrachloride								
1,2-Dichloroethane								
Benzene								
1,2-Dichloropropane								
Trichloroethene								
Bromodichloromethane								
Dibromomethane								
TAME								
Cis-1,3-Dichloropropene								
Toluene								
trans-1,3-Dichloropropene								
1,1,2-Trichloroethane	Toluene	ug/kg	< 5	MCERTS	6	13	< 5	
1,3-Dichloropropane	trans-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Tetrachloroethene	1,1,2-Trichloroethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	
Tetrachloroethene	1,3-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Dibromochloromethane								
1,2-Dibromoethane								
Chlorobenzene								
1,1,1,2-Tetrachloroethane								
Ethyl Benzene								
mp-Xylene ug/kg < 10 MCERTS < 10 < 23 < 10 0-Xylene ug/kg < 10								
o-Xylene ug/kg < 10 < 10 < 10 Styrene ug/kg < 5								
Styrene		5, 5						
Bromoform ug/kg < 10 MCERTS < 10 < 10 < 10								
Isopropylbenzene		•						
1,1,2,2-Tetrachloroethane ug/kg < 5								
1,2,3-Trichloropropane ug/kg < 5		5, 5						
n-Propylbenzene ug/kg < 5	1,1,2,2-Tetrachloroethane	ug/kg						
Bromobenzene ug/kg < 5 MCERTS < 5 < 5 < 5 < 5	1,2,3-Trichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
2-Chlorotoluene ug/kg < 5	n-Propylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
2-Chlorotoluene ug/kg < 5	Bromobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,3,5-Trimethylbenzene ug/kg < 5	2-Chlorotoluene	ug/kg	< 5	MCERTS				
4-Chlorotoluene ug/kg < 5								
tert-Butylbenzene ug/kg < 5 MCERTS < 5 < 5 < 5 1,2,4-Trimethylbenzene ug/kg < 5								
1,2,4-Trimethylbenzene ug/kg < 5								
sec-Butylbenzene ug/kg < 5 MCERTS < 5 < 5 < 5 p-Isopropyltoluene ug/kg < 5								
p-Isopropyltoluene ug/kg < 5 MCERTS < 5 < 5 < 5 1,3-Dichlorobenzene ug/kg < 5								
1,3-Dichlorobenzene ug/kg < 5								
1,4-Dichlorobenzene ug/kg < 5								
n-Butylbenzene ug/kg < 5 MCERTS < 5 < 5 < 5 1,2-Dichlorobenzene ug/kg < 5								
1,2-Dichlorobenzene ug/kg < 5 MCERTS < 5 < 5 < 5 ,2-Dibromo-3-chloropropane ug/kg < 10								
,2-Dibromo-3-chloropropane ug/kg < 10 MCERTS < 10 < 10 < 10								
, , , , , , , , , , , , , , , , , , , ,								
Hexachlorobutadiene ug/kg < 5 MCERTS < 5 < 5 < 5								
	Hexachlorobutadiene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	

Analytical results are expressed on a dry weight basis where samples are dried at less than $30^{\rm O}\text{C}$

Soil Analysis Certificate - Semi Volatile Organic Compounds (SVOC)										
QTS Environmental Report No: 13-17152	Date Sampled	09/10/13	09/10/13	09/10/13	09/10/13	09/10/13				
Ivy House Environmental Ltd	Time Sampled	None Supplied								
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSA1	WSA2	WSC	WSC	WSE				
Project / Job Ref: IV.58.13	Additional Refs	None Supplied								
Order No: None Supplied	Depth (m)	2.00	0.70	2.10 - 2.30	2.50 - 3.00	3.70				
Reporting Date: 22/10/2013	QTSE Sample No	82473	82474	82476	82477	82479				

Determinand	Unit	MDL	Accreditation					
Phenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2,4-Trichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nitrobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
0-Cresol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-chloroethoxy)methane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-chloroethyl)ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chlorophenol	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dimethylphenol	mg/kg	< 0.15	ISO17025	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
Isophorone	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachloroethane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
p-Cresol	mg/kg	< 0.15	MCERTS	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
2,4,6-Trichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylnaphthalene	mg/kg	< 0.1	MCERTS	< 0.1	0.3	43.4	< 0.1	< 0.1
Hexachlorocyclopentadiene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dimethyl phthalate	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloroanaline	mg/kg	< 0.2	NONE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
4-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chlorophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Bromophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Diethyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzofuran	mg/kg	< 0.1	MCERTS	< 0.1	3	15.9	< 0.1	< 0.1
Azobenzene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibutyl phthalate	mg/kg	< 0.15	ISO17025	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
Carbazole	mg/kg	< 0.1	ISO17025	< 0.1	1.6	3.4	< 0.1	< 0.1
bis(2-ethylhexyl)phthalate	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Benzyl butyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-octyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Analytical results are expressed on a dry weight basis where samples are dried at less than $30\,^{\rm O}{\rm C}$

Soil Analysis Certificate - Semi Volatile Organic Compounds (SVOC)									
QTS Environmental Report No: 13-17152	Date Sampled	09/10/13	09/10/13						
Ivy House Environmental Ltd	Time Sampled	None Supplied	None Supplied						
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSG	WSG						
Project / Job Ref: IV.58.13	Additional Refs	None Supplied	None Supplied						
Order No: None Supplied	Depth (m)	1.15	2.00 - 2.40						
Reporting Date: 22/10/2013	QTSE Sample No	82480	82481						

Determinand	Unit	MDL	Accreditation				
Phenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
1,2,4-Trichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1		
2-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
Nitrobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
0-Cresol	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
bis(2-chloroethoxy)methane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
bis(2-chloroethyl)ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
2,4-Dichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
2-Chlorophenol	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1		
1,3-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1		
1,4-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1		
1,2-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1		
2,4-Dimethylphenol	mg/kg	< 0.15	ISO17025	< 0.15	< 0.15		
Isophorone	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
Hexachloroethane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
p-Cresol	mg/kg	< 0.15	MCERTS	< 0.15	< 0.15		
2,4,6-Trichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
2,4,5-Trichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
2-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
4-Chloro-3-methylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
2-Methylnaphthalene	mg/kg	< 0.1	MCERTS	0.5	< 0.1		
Hexachlorocyclopentadiene	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
Hexachlorobutadiene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1		
2,6-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Dimethyl phthalate	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
2-Chloronaphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
4-Chloroanaline	mg/kg	< 0.2	NONE	< 0.2	< 0.2		
4-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
4-Chlorophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
3-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
4-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
4-Bromophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Hexachlorobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
2,4-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Diethyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		_
Dibenzofuran	mg/kg	< 0.1	MCERTS	1.1	< 0.1		
Azobenzene	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
Dibutyl phthalate	mg/kg	< 0.15	ISO17025	< 0.15	< 0.15		_
Carbazole	mg/kg	< 0.1	ISO17025	0.9	0.2		
bis(2-ethylhexyl)phthalate	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2		
Benzyl butyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Di-n-octyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Analytical results are expressed on a						-	

Analytical results are expressed on a dry weight basis where samples are dried at less than $30\,^{\rm O}{\rm C}$

Soil Analysis Certificate - Sample Descriptions	
QTS Environmental Report No: 13-17152	
Ivy House Environmental Ltd	
Site Reference: Pennycroft, Uttoxeter	
Project / Job Ref: IV.58.13	
Order No: None Supplied	
Reporting Date: 22/10/2013	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
82473	WSA1	None Supplied	2.00	10.7	Light brown sandy clay
82474	WSA2	None Supplied	0.70	20	Black sandy gravel
82475	WSB	None Supplied	2.00	21.4	Black sandy gravel
82476	WSC	None Supplied	2.10 - 2.30	18.7	Brown clay
82477	WSC	None Supplied	2.50 - 3.00	19.3	Red clay with rubble
82478	WSD	None Supplied	1.00 - 1.60	9.7	Brown sandy gravel
82479	WSE	None Supplied	3.70	13.5	Brown silt
82480	WSG	None Supplied	1.15	5.9	Brown sandy clay
82481	WSG	None Supplied	2.00 - 2.40	20.4	Brown sandy clay
82482	WSH	None Supplied	1.00	17.8	Brown sandy clay
82483	WS7	None Supplied	0.50 - 1.00	5.8	Light brown clayey sand with rubble and stones

Insufficient sample $^{\mathrm{I/S}}$ Unsuitable Sample $^{\mathrm{U/S}}$

Soil Analysis Certificate - Methodology & Miscellaneous Information QTS Environmental Report No: 13-17152
Ivy House Environmental Ltd
Site Reference: Pennycroft, Uttoxeter
Project / Job Ref: IV.58.13
Order No: None Supplied
Reporting Date: 22/10/2013

Matrix	Analysed	Determinand	Brief Method Description	Method
Soil	On D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	No E002
Soil	D		Determination of metals by aqua-regia digestion followed by ICP-OES Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of eaters in 30 by adda regia digestor rollowed by ICP-OES Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
	4.5		Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	E016
Soil	AR	Chromium - Hexavalent	1,5 diphenylcarbazide followed by colorimetry	E016
Soil	D		Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E021
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	D		Determination of elemental sulphur by solvent extraction followed by turbidimeter	E020
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E023
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E011
Soil	D	Loss on Ignition @ 450°C	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle	E019
			furnace	
Soil	AR	Moisture Content		E003
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E011
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	D		Determination of phosphorus by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	AR	Sulphide	Determination of sulphide by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia, potassium iodide/iodate followed by ICP- OFS	E002
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (III) sulphate	E011
Soil	AR	BTEX		E001
Soil	D		Gravimetrically determined through extraction with cyclohexane	E009
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E009
Soil	AR		Determination of phenols by distillation followed by colorimetry	E010
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E009
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	VPH (C6 - C10)	Determination of hydrocarbons C6-C10 by headspace GC-MS	E001
Soil	AR	EPH TEXAS	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	TPH CWG	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	TPH LQM	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	EPH (with florisil cleanup)	Determination of acetone/hexane extractable hydrocarbons with florisil cleanup step by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001

Key

D Dried AR As Received

Richard Sutton
Ivy House Environmental Ltd
Scotland Farm
Ockbrook
Derby
DE72 3RX

QTS Environmental Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 13-17848

Site Reference: Pennycroft, Uttoxeter

Project / Job Ref: IV.58.13

Order No: None Supplied

Sample Receipt Date: 19/11/2013

Sample Scheduled Date: 19/11/2013

Report Issue Number: 1

Reporting Date: 21/11/2013

Authorised by:

Russell Jarvis Director

On behalf of QTS Environmental Ltd

Authorised by:

Kevin Old Director

On behalf of QTS Environmental Ltd

co CQ

Soil Analysis Certificate										
QTS Environmental Report No: 13-17848	Date Sampled	18/11/13	18/11/13	18/11/13						
Ivy House Environmental Ltd	Time Sampled	None Supplied	None Supplied	None Supplied						
Site Reference: Pennycroft, Uttoxeter	TP / BH No	HDB	HDC	HDD						
Project / Job Ref: IV.58.13	Additional Refs	None Supplied	None Supplied	None Supplied						
Order No: None Supplied	Depth (m)	0.30	0.40	0.25		·				
Reporting Date: 21/11/2013	QTSE Sample No	86229	86230	86231						

Determinand	Unit	MDL	Accreditation				
Asbestos Screen (S)	N/a	N/a	ISO17025	None Detected	None Detected	None Detected	
pH	pH Units	N/a	MCERTS	6.6	7.9	7.8	
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	
Total Sulphate as SO ₄		< 200	NONE	6547	1484	683	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	NONE	1.25	0.08	0.04	
Organic Matter	%	< 0.1	NONE	4.9	5.9	2.6	
Arsenic (As)	mg/kg	< 2	MCERTS	18	5	5	
Cadmium (Cd)	mg/kg	< 0.5	MCERTS	< 0.5	2.3	0.9	
Chromium (Cr)	mg/kg	< 2	MCERTS	18	21	14	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	86	33	25	
Lead (Pb)	mg/kg	< 3	MCERTS	140	125	36	
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	23	16	14	
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	
Zinc (Zn)	mg/kg	< 3	MCERTS	72	91	70	·
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C Analysis carried out on the dried sample is corrected for the stone content

Subcontracted analysis (S)

Soil Analysis Certificate - Speciated PAHs										
QTS Environmental Report No: 13-17848	Date Sampled	18/11/13	18/11/13	18/11/13						
Ivy House Environmental Ltd	Time Sampled	None Supplied	None Supplied	None Supplied						
Site Reference: Pennycroft, Uttoxeter	TP / BH No	HDB	HDC	HDD						
Project / Job Ref: IV.58.13	Additional Refs	None Supplied	None Supplied	None Supplied						
Order No: None Supplied	Depth (m)	0.30	0.40	0.25						
Reporting Date: 21/11/2013	QTSE Sample No	86229	86230	86231						

Determinand	Unit	MDL	Accreditation				
Naphthalene	mg/kg	< 0.1	MCERTS	14.20	0.47	< 0.1	
Acenaphthylene	mg/kg	< 0.1	MCERTS	8.53	0.60	< 0.1	
Acenaphthene	mg/kg	< 0.1	MCERTS	3.44	0.20	< 0.1	
Fluorene	mg/kg	< 0.1	MCERTS	12.90	0.29	< 0.1	
Phenanthrene	mg/kg	< 0.1	MCERTS	80.70	6.20	< 0.1	
Anthracene	mg/kg	< 0.1	MCERTS	23.40	2.11	< 0.1	
Fluoranthene	mg/kg	< 0.1	MCERTS	97.60	30.60	0.37	
Pyrene	mg/kg	< 0.1	MCERTS	77.80	26.40	0.42	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	30.60	13.60	0.23	
Chrysene	mg/kg	< 0.1	MCERTS	32.20	13.40	0.36	
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	32.40	16.50	0.70	
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	15	7.52	0.27	
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	28	14.10	0.48	
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	12.90	7.42	0.27	
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	0.90	0.26	< 0.1	
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	10.60	5.88	0.31	
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	481	146	3.4	

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C

Soil Analysis Certificate - Sample Descriptions	
QTS Environmental Report No: 13-17848	
Ivy House Environmental Ltd	
Site Reference: Pennycroft, Uttoxeter	
Project / Job Ref: IV.58.13	
Order No: None Supplied	
Reporting Date: 21/11/2013	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
86229	HDB	None Supplied	0.30	17.5	Brown clayey gravel with rubble and metal
86230	HDC	None Supplied	0.40	9.1	Brown gravelly clay with rubble and brick
86231	HDD	None Supplied	0.25	6.5	Brown gravel with rubble

Insufficient sample ^{I/S} Unsuitable Sample ^{U/S}

Soil Analysis Certificate - Methodology & Miscellaneous Information QTS Environmental Report No: 13-17848
Ivy House Environmental Ltd
Site Reference: Pennycroft, Uttoxeter
Project / Job Ref: IV.58.13
Order No: None Supplied
Reporting Date: 21/11/2013

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	E016
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E021
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by turbidimeter	E020
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E023
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E011
Soil	D	Loss on Ignition @ 450°C	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E011
Soil	AR	На	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	D		Determination of phosphorus by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	AR	Sulphide	Determination of sulphide by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia, potassium iodide/iodate followed by ICP- OES	E002
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E011
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001
Soil	D		Gravimetrically determined through extraction with cyclohexane	E009
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E009
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E010
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	D		Gravimetrically determined through extraction with toluene	E009
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of hydrocarbons C6-C10 by headspace GC-MS	E001
Soil	AR	EPH TEXAS	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	TPH CWG	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	TPH LQM	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	EPH (with florisil cleanup)	Determination of acetone/hexane extractable hydrocarbons with florisil cleanup step by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001

Key

D Dried AR As Received

APPENDIX F

Richard Sutton
Ivy House Environmental Ltd
Scotland Farm
Ockbrook
Derby
DE72 3RX

QTS Environmental Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN

t: 01622 850410 russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 13-17439

Site Reference: Pennycroft, Uttoxeter

Project / Job Ref: IV.58.13

Order No: None Supplied

Sample Receipt Date: 28/10/2013

Sample Scheduled Date: 28/10/2013

Report Issue Number: 1

Reporting Date: 05/11/2013

Authorised by:

Russell Jarvis Director

On behalf of QTS Environmental Ltd

Authorised by:

Kevin Old Director

On behalf of QTS Environmental Ltd

co CQ

Water Analysis Certificate											
QTS Environmental Report No: 13-17439	Date Sampled	25/10/13	25/10/13	25/10/13	25/10/13	25/10/13					
Ivy House Environmental Ltd	Time Sampled	None Supplied									
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSA2	BWBBH7	WSB	WSL	WSE					
Project / Job Ref: IV.58.13	Additional Refs	None Supplied									
Order No: None Supplied	Depth (m)	None Supplied									
Reporting Date: 05/11/2013	QTSE Sample No	83843	83844	83845	83846	83847					

Determinand	Unit	MDL	Accreditation					
pH	pH Units	N/a	ISO17025	7.8	7.1	7.9	6.9	7.2
Total Cyanide	ug/l	< 5	NONE	< 5	< 5	< 5	< 5	< 5
Complex Cyanide	ug/l	< 5	NONE	< 5	< 5	< 5	< 5	< 5
Free Cyanide	ug/l	< 5	NONE	< 5	< 5	< 5	< 5	< 5
Thiocyanate as SCN	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Sulphate as SO ₄	mg/l	< 1	NONE	985	99	1250	541	163
Total Organic Carbon (TOC)	mg/l	< 0.1	NONE	6.2	1.8	29	9.9	10.1
Arsenic (dissolved)	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Cadmium (dissolved)	ug/l	< 0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chromium (dissolved)	ug/l	< 5	NONE	< 5	5	< 5	< 5	< 5
Chromium (hexavalent)	ug/l	< 5	NONE	< 5	< 5	< 5	< 5	< 5
Copper (dissolved)	ug/l	< 10	NONE	< 10	< 10	< 10	13	< 10
Lead (dissolved)	ug/l	< 5	NONE	< 5	< 5	< 5	< 5	< 5
Mercury (dissolved)	ug/l	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	ug/l	< 7	NONE	< 7	< 7	< 7	< 7	< 7
Selenium (dissolved)	ug/l	< 5	NONE	< 5	< 5	< 5	< 5	< 5
Zinc (dissolved)	ug/l	< 5	NONE	8	< 5	< 5	5	23
Total Phenols	ug/l	< 0.5	NONE	0.5	< 0.5	37.8	< 0.5	< 0.5

Subcontracted analysis (S)

Water Analysis Certificate										
QTS Environmental Report No: 13-17439	Date Sampled	25/10/13								
Ivy House Environmental Ltd	Time Sampled	None Supplied								
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSI								
Project / Job Ref: IV.58.13	Additional Refs	None Supplied								
Order No: None Supplied	Depth (m)	None Supplied								
Reporting Date: 05/11/2013	QTSE Sample No	83848								

Determinand	Unit	MDL	Accreditation			
pН	pH Units	N/a	ISO17025	7.2		
Total Cyanide	ug/l	< 5	NONE	< 5		
Complex Cyanide	ug/l	< 5	NONE	< 5		
Free Cyanide	ug/l	< 5	NONE	< 5		
Thiocyanate as SCN	ug/l	< 10	NONE	< 10		
Sulphate as SO ₄	mg/l	< 1	NONE	36		
Total Organic Carbon (TOC)	mg/l	< 0.1	NONE	8.5		
Arsenic (dissolved)	ug/l	< 10	NONE	< 10		
Cadmium (dissolved)	ug/l	< 0.5	NONE	< 0.5		
Chromium (dissolved)	ug/l	< 5	NONE	< 5		
Chromium (hexavalent)	ug/l	< 5	NONE	< 5		
Copper (dissolved)	ug/l	< 10	NONE	< 10		
Lead (dissolved)	ug/l	< 5	NONE	< 5		
Mercury (dissolved)	ug/l	< 0.05	NONE	< 0.05		
Nickel (dissolved)	ug/l	< 7	NONE	< 7		
Selenium (dissolved)	ug/l	< 5	NONE	< 5		
Zinc (dissolved)	ug/l	< 5	NONE	< 5		
Total Phenols	ug/l	< 0.5	NONE	< 0.5		

Subcontracted analysis (S)

Tel: 01622 850410

Water Analysis Certificate - Speciated PAH											
QTS Environmental Report No: 13-1	Date Sampled	25/10/13	25/10/13	25/10/13	25/10/13	25/10/13					
Ivy House Environmental Ltd	Time Sampled	None Supplied									
Site Reference: Pennycroft,	TP / BH No	WSA2	BWBBH7	WSB	WSL	WSE					
Uttoxeter											
Project / Job Ref: IV.58.13	Additional Refs	None Supplied									
Order No: None Supplied	Depth (m)	None Supplied									
Reporting Date: 05/11/2013	QTSE Sample No	83843	83844	83845	83846	83847					

Determinand	Unit	MDL	Accreditation					
Naphthalene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	ug/l	< 0.01	NONE	11.61	< 0.01	8.38	< 0.01	< 0.01
Acenaphthene	ug/l	< 0.01	NONE	8.77	< 0.01	5.82	< 0.01	< 0.01
Fluorene	ug/l	< 0.01	NONE	3.61	< 0.01	4.95	< 0.01	< 0.01
Phenanthrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	3.86	< 0.01	< 0.01
Anthracene	ug/l	< 0.01	NONE	1.19	< 0.01	1.09	< 0.01	< 0.01
Fluoranthene	ug/l	< 0.01	NONE	4.84	< 0.01	1.63	< 0.01	< 0.01
Pyrene	ug/l	< 0.01	NONE	3.12	< 0.01	1.02	< 0.01	< 0.01
Benzo(a)anthracene	ug/l	< 0.01	NONE	0.39	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	ug/l	< 0.01	NONE	0.23	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	0.28	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total EPA-16 PAHs	ug/l	< 0.01	NONE	34.04	< 0.01	26.75	< 0.01	< 0.01

Tel: 01622 850410

Water Analysis Certificate - Specia	Water Analysis Certificate - Speciated PAH										
QTS Environmental Report No: 13-1	Date Sampled	25/10/13									
Ivy House Environmental Ltd	Time Sampled	None Supplied									
Site Reference: Pennycroft,	TP / BH No	WSI									
Uttoxeter											
Project / Job Ref: IV.58.13	Additional Refs	None Supplied									
Order No: None Supplied	Depth (m)	None Supplied									
Reporting Date: 05/11/2013	QTSE Sample No	83848									

Determinand	Unit	MDL	Accreditation			
Naphthalene	ug/l	< 0.01	NONE	< 0.01		
Acenaphthylene	ug/l	< 0.01	NONE	0.39		
Acenaphthene	ug/l	< 0.01	NONE	0.90		
Fluorene	ug/l	< 0.01	NONE	1.91		
Phenanthrene	ug/l	< 0.01	NONE	2.07		
Anthracene	ug/l	< 0.01	NONE	0.55		
Fluoranthene	ug/l	< 0.01	NONE	1.24		
Pyrene	ug/l	< 0.01	NONE	0.82		
Benzo(a)anthracene	ug/l	< 0.01	NONE	0.20		
Chrysene		< 0.01	NONE	0.14		
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	0.22		
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01		
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01		
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01		
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01		
Benzo(ghi)perylene	ug/l	< 0.01	NONE	< 0.01		
Total EPA-16 PAHs	ug/l	< 0.01	NONE	8.44		

Water Analysis Certificate - TPH CWG Banded										
QTS Environmental Report No: 13-17439	Date Sampled	25/10/13	25/10/13	25/10/13	25/10/13	25/10/13				
Ivy House Environmental Ltd	Time Sampled	None Supplied								
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSA2	BWBBH7	WSB	WSL	WSE				
Project / Job Ref: IV.58.13	Additional Refs	None Supplied								
Order No: None Supplied	Depth (m)	None Supplied								
Reporting Date: 05/11/2013	QTSE Sample No	83843	83844	83845	83846	83847				

Determinand	Unit	MDL	Accreditation					
Aliphatic >C5 - C6	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C6 - C8	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C8 - C10	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C10 - C12	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C12 - C16	ug/l	< 10	NONE	11	< 10	< 10	< 10	< 10
Aliphatic >C16 - C21	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C21 - C34	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic (C5 - C34)	ug/l	< 70	NONE	< 70	< 70	< 70	< 70	< 70
Aromatic >C5 - C7	ug/l	< 10	NONE	< 10	< 10	384	< 10	< 10
Aromatic >C7 - C8	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic >C8 - C10	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic >C10 - C12	ug/l	< 10	NONE	< 10	< 10	18	< 10	< 10
Aromatic >C12 - C16	ug/l	< 10	NONE	80	< 10	58	< 10	< 10
Aromatic >C16 - C21	ug/l	< 10	NONE	37	< 10	35	< 10	< 10
Aromatic >C21 - C35	ug/l	< 10	NONE	20	< 10	< 10	< 10	< 10
Aromatic (C5 - C35)	ug/l	< 70	NONE	138	< 70	496	< 70	< 70
Total >C5 - C35	ug/l	< 140	NONE	149	< 140	496	< 140	< 140

Water Analysis Certificate - TPH CWG Banded									
QTS Environmental Report No: 13-17439	Date Sampled	25/10/13							
Ivy House Environmental Ltd	Time Sampled	None Supplied							
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSI							
Project / Job Ref: IV.58.13	Additional Refs	None Supplied							
Order No: None Supplied	Depth (m)	None Supplied							
Reporting Date: 05/11/2013	QTSE Sample No	83848							

Determinand	Unit	MDL	Accreditation			
Aliphatic >C5 - C6	ug/l	< 10	NONE	< 10		
Aliphatic >C6 - C8	ug/l	< 10	NONE	< 10		
Aliphatic >C8 - C10	ug/l	< 10	NONE	< 10		
Aliphatic >C10 - C12	ug/l	< 10	NONE	< 10		
Aliphatic >C12 - C16	ug/l	< 10	NONE	< 10		
Aliphatic >C16 - C21	ug/l	< 10	NONE	< 10		
Aliphatic >C21 - C34	ug/l	< 10	NONE	< 10		
Aliphatic (C5 - C34)	ug/l	< 70	NONE	< 70		
Aromatic >C5 - C7	ug/l	< 10	NONE	< 10		
Aromatic >C7 - C8	ug/l	< 10	NONE	< 10		
Aromatic >C8 - C10	ug/l	< 10	NONE	< 10		
Aromatic >C10 - C12	ug/l	< 10	NONE	< 10		
Aromatic >C12 - C16	ug/l	< 10	NONE	24		
Aromatic >C16 - C21	ug/l	< 10	NONE	16		
Aromatic >C21 - C35	ug/l	< 10	NONE	< 10		
Aromatic (C5 - C35)	ug/l	< 70	NONE	< 70		
Total >C5 - C35	ug/l	< 140	NONE	< 140		

4480

Water Analysis Certificate - BTEX / MTBE						
QTS Environmental Report No: 13-17439	Date Sampled	25/10/13	25/10/13	25/10/13	25/10/13	25/10/13
Ivy House Environmental Ltd	Time Sampled	None Supplied				
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSA2	BWBBH7	WSB	WSL	WSE
Project / Job Ref: IV.58.13	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	None Supplied				
Reporting Date: 05/11/2013	QTSE Sample No	83843	83844	83845	83846	83847

Determinand	Unit	MDL	Accreditation					
Benzene	ug/l	< 1	ISO17025	< 1	< 1	384	< 1	< 1
Toluene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Ethylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
p & m-xylene	ug/l	< 10	ISO17025	< 10	< 10	< 10	< 10	< 10
o-xylene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5

Water Analysis Certificate - BTEX / MTBE									
QTS Environmental Report No: 13-17439	Date Sampled	25/10/13							
Ivy House Environmental Ltd	Time Sampled	None Supplied							
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSI							
Project / Job Ref: IV.58.13	Additional Refs	None Supplied							
Order No: None Supplied	Depth (m)	None Supplied							
Reporting Date: 05/11/2013	QTSE Sample No	83848							

Determinand	Unit	MDL	Accreditation				
Benzene	ug/l	< 1	ISO17025	< 1			
Toluene	ug/l	< 5	ISO17025	< 5			
Ethylbenzene	ug/l	< 5	ISO17025	< 5			
p & m-xylene	ug/l	< 10	ISO17025	< 10			
o-xylene	ug/l	< 5	ISO17025	< 5		·	

Water Analysis Certificate - Volatile Organic Compounds (VOC)
QTS Environmental Report No: 13-17439 Date Sampled
Ivy House Environmental Ltd Time Sampled 25/10/13 25/10/13 25/10/13 25/10/13 25/10/13 None Supplied None Supplied None Supplied None Supplied None Supplied Site Reference: Pennycroft, Uttoxeter Project / Job Ref: IV.58.13 Order No: None Supplied Reporting Date: 05/11/2013 TP / BH No Additional Refs WSA2 BWBBH7 WSB WSL WSE None Supplied None Supplied None Supplied None Supplied None Supplied Depth (m) None Supplied None Supplied None Supplied None Supplied None Supplied

Reporting Date: 05/11/2	013		QTSE Sample No	83843	83844	83845	83846	83847
								1
Determinand	Unit	MDL	Accreditation	-	_	_	· -	
Dichlorodifluoromethane	ug/l	< 5 < 5	IS017025 IS017025	< 5 < 5				
Vinyl Chloride Chloromethane	ug/l ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Chloroethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Bromomethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Trichlorofluoromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
1,1-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
MTBE	ug/l	< 10	ISO17025	< 10	< 10	< 10	< 10	< 10
trans-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
1,1-Dichloroethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
cis-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
2,2-Dichloropropane	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Chloroform	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Bromochloromethane	ug/l	< 10	ISO17025	< 10	< 10	< 10	< 10	< 10
1,1,1-Trichloroethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
1,1-Dichloropropene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Carbon Tetrachloride	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
1,2-Dichloroethane	ug/l	< 10	ISO17025	< 10	< 10	< 10	< 10	< 10
Benzene	ug/l	< 1	ISO17025	< 1	< 1	384	< 1	< 1
1,2-Dichloropropane	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Trichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Bromodichloromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Dibromomethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
TAME	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
cis-1,3-Dichloropropene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Toluene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
trans-1,3-Dichloropropene	ug/l	< 5 < 10	ISO17025	< 5 < 10	< 5	< 5	< 5 < 10	< 5 < 10
1,1,2-Trichloroethane 1,3-Dichloropropane	ug/l ug/l	< 10 < 5	IS017025 IS017025	< 10 < 5	< 10 < 5	< 10 < 5	< 10	< 10 < 5
Tetrachloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Dibromochloromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
1,2-Dibromoethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Chlorobenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
1,1,1,2-Tetrachloroethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Ethyl Benzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
m,p-Xylene	ug/l	< 10	ISO17025	< 10	< 10	< 10	< 10	< 10
o-Xylene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Styrene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Bromoform	ug/l	< 10	ISO17025	< 10	< 10	< 10	< 10	< 10
Isopropylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
1,1,2,2-Tetrachloroethane	ug/l	< 10	ISO17025	< 10	< 10	< 10	< 10	< 10
1,2,3-Trichloropropane	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
n-Propylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Bromobenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
2-Chlorotoluene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
1,3,5-Trimethylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
4-Chlorotoluene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
tert-Butylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
1,2,4-Trimethylbenzene	ug/l	< 5	ISO17025	< 5 < 5				
sec-Butylbenzene	ug/l	< 5 < 5	IS017025 IS017025	< 5 < 5	< 5 < 5	< 5	< 5 < 5	< 5 < 5
p-Isopropyltoluene 1,3-Dichlorobenzene	ug/l ug/l	< 5 < 5	ISO17025	< 5 < 5	< 5	< 5	< 5	< 5 < 5
1,4-Dichlorobenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
n-Butylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
1,2-Dichlorobenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
1,2-Dichlorobenzene	ug/l	< 10	ISO17025	< 10	< 10	< 10	< 10	< 10
Hexachlorobutadiene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
ricadrilorobutadiene	ug/i	\)	1501/025	\)	\)	\)	\)	\)

	Water Analysis Certificate - Volatile Organic Compounds (VOC)									
QTS Environmental Report No: 13-17439	Date Sampled	25/10/13								
Ivy House Environmental Ltd	Time Sampled	None Supplied								
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSI								
Project / Job Ref: IV.58.13	Additional Refs	None Supplied								
Order No: None Supplied	Depth (m)	None Supplied								
Reporting Date: 05/11/2013	QTSE Sample No	83848								

Determinand	Unit	MDL	Accreditation			
Dichlorodifluoromethane	ug/l	< 5	ISO17025	< 5		
Vinyl Chloride	ug/l	< 5	ISO17025	< 5		
Chloromethane	ug/l	< 5	ISO17025	< 5		
Chloroethane	ug/l	< 5	ISO17025	< 5		
Bromomethane	ug/l	< 5	ISO17025	< 5		
Trichlorofluoromethane	ug/l	< 5	ISO17025	< 5		
1,1-Dichloroethene	ug/l	< 5	ISO17025	< 5		
1,1-Dichioroetherie	•	< 10	ISO17025	< 10		
trans-1,2-Dichloroethene	ug/l		ISO17025			
	ug/l	< 5		< 5		
1,1-Dichloroethane	ug/l	< 5	ISO17025	< 5		
cis-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5		
2,2-Dichloropropane	ug/l	< 5	ISO17025	< 5		
Chloroform	ug/l	< 5	ISO17025	< 5		
Bromochloromethane	ug/l	< 10	ISO17025	< 10		
1,1,1-Trichloroethane	ug/l	< 5	ISO17025	< 5		
1,1-Dichloropropene	ug/l	< 5	ISO17025	< 5		
Carbon Tetrachloride	ug/l	< 5	ISO17025	< 5		
1,2-Dichloroethane	ug/l	< 10	ISO17025	< 10		
Benzene	ug/l	< 1	ISO17025	< 1		
1,2-Dichloropropane	ug/l	< 5	ISO17025	< 5		
Trichloroethene	ug/l	< 5	ISO17025	< 5		
Bromodichloromethane	ug/l	< 5	ISO17025	< 5		
Dibromomethane	ug/l	< 5	ISO17025	< 5		
TAME	ug/l	< 5	ISO17025	< 5		
cis-1,3-Dichloropropene	ug/l	< 5	ISO17025	< 5		
Toluene	ug/l	< 5	ISO17025	< 5		
trans-1,3-Dichloropropene	ug/l	< 5	ISO17025	< 5		
1,1,2-Trichloroethane	ug/l	< 10	ISO17025	< 10		
1,3-Dichloropropane	ug/l	< 5	ISO17025	< 5		
Tetrachloroethene	ug/l	< 5	ISO17025	< 5		
		< 5	ISO17025			
Dibromochloromethane	ug/l		ISO17025	< 5		
1,2-Dibromoethane	ug/l	< 5		< 5		
Chlorobenzene	ug/l	< 5	ISO17025	< 5		
1,1,1,2-Tetrachloroethane	ug/l	< 5	ISO17025	< 5		
Ethyl Benzene	ug/l	< 5	ISO17025	< 5		
m,p-Xylene	ug/l	< 10	ISO17025	< 10		
o-Xylene	ug/l	< 5	ISO17025	< 5		
Styrene	ug/l	< 5	ISO17025	< 5		
Bromoform	ug/l	< 10	ISO17025	< 10		
Isopropylbenzene	ug/l	< 5	ISO17025	< 5		
1,1,2,2-Tetrachloroethane	ug/l	< 10	ISO17025	< 10		
1,2,3-Trichloropropane	ug/l	< 5	ISO17025	< 5		
n-Propylbenzene	ug/l	< 5	ISO17025	< 5		
Bromobenzene	ug/l	< 5	ISO17025	< 5		
2-Chlorotoluene	ug/l	< 5	ISO17025	< 5		
1,3,5-Trimethylbenzene	ug/l	< 5	ISO17025	< 5		
4-Chlorotoluene	ug/l	< 5	ISO17025	< 5		
tert-Butylbenzene	ug/l	< 5	ISO17025	< 5		
1,2,4-Trimethylbenzene	ug/l	< 5	ISO17025	< 5		
sec-Butylbenzene	ug/l	< 5	ISO17025	< 5		
p-Isopropyltoluene	ug/l	< 5	ISO17025	< 5		
1,3-Dichlorobenzene	ug/l	< 5	ISO17025	< 5		
1,4-Dichlorobenzene	ug/l	< 5	ISO17025	< 5		
n-Butylbenzene	ug/l	< 5	ISO17025	< 5		
1,2-Dichlorobenzene	ug/l	< 5	ISO17025	< 5		
1,2-Dichloropenzene	•	< 10	ISO17025	< 10		
	ug/l					-
Hexachlorobutadiene	ug/l	< 5	ISO17025	< 5		

Water Analysis Certificate - Semi Volatile Organic Compounds (SVOC)										
QTS Environmental Report No: 13-17439	Date Sampled	25/10/13	25/10/13	25/10/13	25/10/13	25/10/13				
Ivy House Environmental Ltd	Time Sampled	None Supplied								
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSA2	BWBBH7	WSB	WSL	WSE				
Project / Job Ref: IV.58.13	Additional Refs	None Supplied								
Order No: None Supplied	Depth (m)	None Supplied								
Reporting Date: 05/11/2013	QTSE Sample No	83843	83844	83845	83846	83847				

1,2,4-Trichlorobenzene	Determinand	Unit	MDL	Accreditation					
2-Nitrophenol Ug/l 0.1 NONE 0.1	Phenol	ua/l	< 0.1	NONE	0.5	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitrophenol ug/l 0.1 NONE 0.1	1.2.4-Trichlorobenzene	ua/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nitrobervene		- 31							< 0.1
O-Cresol ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <		5			< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-chloroethoxy)methane		. 3/							< 0.1
bis(2-chroresthylether ug/l 0.1 NONE 0.1 0		5							< 0.1
2,4Dichlorophenol ug/l 0,1 NONE 0,1		ua/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chlorophenol ug/h < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1		. 3/							< 0.1
1,3-Dichlorobenzene	, ,	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,4-Dichlorobenzene		ug/l		NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene		ug/l	< 0.1						< 0.1
2,4-Dimethylphenol ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <	1,2-Dichlorobenzene	ug/l	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Isophorone		ug/l	< 0.1	NONE	< 0.1	< 0.1	36.6	< 0.1	< 0.1
p-Cresol ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <				NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
p-Cresol ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <	Hexachloroethane	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4,6-Trichlorophenol ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1		5		NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4,5-Trichlorophenol ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1		ug/l	< 0.1	NONE	< 0.1		< 0.1	< 0.1	< 0.1
2-Nitroaniline		ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1<			< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylnaphthalene ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	4-Chloro-3-methylphenol	ua/l		NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorocyclopentadiene		ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobutadiene		ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,6-Dinitrotoluene ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1		ug/l		NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1		ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Dimethyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitrophenol ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1		ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chlorophenyl ether ug/l < 0.1	4-Chloroanaline	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3-Nitroaniline	4-Nitrophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitroaniline ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	4-Chlorophenyl phenyl ether	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Bromophenyl phenyl ether ug/l < 0.1	3-Nitroaniline	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobenzene	4-Nitroaniline	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dinitrotoluene ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	4-Bromophenyl phenyl ether	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Diethyl phthalate	Hexachlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzofuran ug/l < 0.1 NONE 5.2 < 0.1 3.3 < 0.1 < 0.1 Azobenzene ug/l < 0.1	2,4-Dinitrotoluene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Azobenzene ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Diethyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibutyl phthalate ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Dibenzofuran	ug/l	< 0.1	NONE	5.2	< 0.1	3.3	< 0.1	< 0.1
Carbazole ug/l < 0.1 NONE < 0.1 < 0.1 5.1 < 0.1 < 0.1 bis(2-ethylhexyl)phthalate ug/l < 0.1	Azobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-ethylhexyl)phthalate $ug/l < 0.1$ NONE < 0.1 < 0.1 < 0.1 < 0.1	Dibutyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Carbazole	ug/l	< 0.1	NONE	< 0.1	< 0.1	5.1	< 0.1	< 0.1
	bis(2-ethylhexyl)phthalate	ug/l							< 0.1
Benzyl butyl phthalate ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1	Benzyl butyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-octyl phthalate ug/l < 0.1 NONE < 0.1 < 0.1 < 0.1 < 0.1	Di-n-octyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Water Analysis Certificate - Semi Volatile	Water Analysis Certificate - Semi Volatile Organic Compounds (SVOC)									
QTS Environmental Report No: 13-17439	Date Sampled	25/10/13								
Ivy House Environmental Ltd	Time Sampled	None Supplied								
Site Reference: Pennycroft, Uttoxeter	TP / BH No	WSI								
Project / Job Ref: IV.58.13	Additional Refs	None Supplied								
Order No: None Supplied	Depth (m)	None Supplied								
Reporting Date: 05/11/2013	QTSE Sample No	83848								

Determinand	Unit	MDL	Accreditation				
Phenol	ug/l	< 0.1	NONE	< 0.1	1	I	
1,2,4-Trichlorobenzene	ug/l	< 0.1	NONE	< 0.1			
2-Nitrophenol	ug/l	< 0.1	NONE	< 0.1			
Nitrobenzene	ug/l	< 0.1	NONE	< 0.1			
0-Cresol	ug/l	< 0.1	NONE	< 0.1			
bis(2-chloroethoxy)methane	ug/l	< 0.1	NONE	< 0.1			
bis(2-chloroethyl)ether	ug/l	< 0.1	NONE	< 0.1			
2,4-Dichlorophenol	ug/l	< 0.1	NONE	< 0.1			
2-Chlorophenol	ug/l	< 0.1	NONE	< 0.1			
1,3-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1			
1,4-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1			
1,2-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1			
2,4-Dimethylphenol	ug/l	< 0.1	NONE	< 0.1			
Isophorone	ug/l	< 0.1	NONE	< 0.1			
Hexachloroethane	ug/l	< 0.1	NONE	< 0.1			
p-Cresol	ug/l	< 0.1	NONE	< 0.1			
2,4,6-Trichlorophenol	ug/l	< 0.1	NONE	< 0.1			
2,4,5-Trichlorophenol	ug/l	< 0.1	NONE	< 0.1			
2-Nitroaniline	ug/l	< 0.1	NONE	< 0.1			
4-Chloro-3-methylphenol	ug/l	< 0.1	NONE	< 0.1			
2-Methylnaphthalene	ug/l	< 0.1	NONE	< 0.1			
Hexachlorocyclopentadiene	ug/l	< 0.1	NONE	< 0.1			
Hexachlorobutadiene	ug/l	< 0.1	NONE	< 0.1			
2,6-Dinitrotoluene	ug/l	< 0.1	NONE	< 0.1			
Dimethyl phthalate	ug/l	< 0.1	NONE	< 0.1			
2-Chloronaphthalene	ug/l	< 0.1	NONE	< 0.1			
4-Chloroanaline	ug/l	< 0.1	NONE	< 0.1			
4-Nitrophenol	ug/l	< 0.1	NONE	< 0.1			
4-Chlorophenyl phenyl ether	ug/l	< 0.1	NONE	< 0.1			
3-Nitroaniline	ug/l	< 0.1	NONE	< 0.1			
4-Nitroaniline	ug/l	< 0.1	NONE	< 0.1			
4-Bromophenyl phenyl ether	ug/l	< 0.1	NONE	< 0.1			
Hexachlorobenzene	ug/l	< 0.1	NONE	< 0.1			
2,4-Dinitrotoluene	ug/l	< 0.1	NONE	< 0.1			
Diethyl phthalate	ug/l	< 0.1	NONE	< 0.1			
Dibenzofuran	ug/l	< 0.1	NONE	2.3			
Azobenzene	ug/l	< 0.1	NONE	< 0.1			
Dibutyl phthalate	ug/l	< 0.1	NONE	< 0.1			
Carbazole	ug/l	< 0.1	NONE	1.5			
bis(2-ethylhexyl)phthalate	ug/l	< 0.1	NONE	< 0.1			
Benzyl butyl phthalate	ug/l	< 0.1	NONE	< 0.1			
Di-n-octyl phthalate	ug/l	< 0.1	NONE	< 0.1			

APPENDIX G

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Ivy House Environmental Scotland Farm Ockbrook Derby DE72 3RX

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Richard Sutton

Date: 4th November, 2013

Your reference: IV.58.13

Our reference : Test Report 13/9972 Batch 1

Location : Pennycroft, Uttoxeter

Date samples received : 29th October, 2013

Status: Final report

Issue:

Three samples were received for analysis on 29th October, 2013. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Paul Lee-Boden BSc Project Manager **Bob Millward BSc FRSC Principal Chemist**

Rjuiellward

Client Name: Ivy House Environmental

IV.58.13 Reference:

Sample Date: 25 Oct 2013 Location: Pennycroft, Uttoxeter Date of Receipt: 29 Oct 2013 Richard Sutton Date Analysed: 4 Nov 2013 Contact:

Sample ID: WSB

Depth: JE Job No:

13/9972

JE Sample No: 1 Matrix: Air

Method: TM68 VOCs on gases (GC-MS)

Initial Vaccum (inches Hg) -28 Final Pressure (psi) -6 Canister Serial number

Q* - Qualifiers Key

Indicates analyte found in associated method blank MDL В Method Detection Limit Indicates value exceeds calibration range RL Reporting Limit UKAS Accredited #

Cas No	Molecular Weight	Compound	Q*	Result	RL	MDL	Result	RL	MDL
		·		ppbv	ppbv	ppbv	ug/m³	ug/m ³	ug/m ³
75-01-4	62.5	# Vinyl Chloride		<1.5	1.5	1.5	<3.8	3.8	3.8
75-71-8	120.91	Dichlorodifluoromethane (F-12)		<2.5	2.5	2.5	<12.4	12.4	12.4
74-87-3	50.49	Chloromethane		<1.5	1.5	1.5	<3.1	3.1	3.1
74-83-9	94.95	Bromomethane		<1.5	1.5	1.5	<5.8	5.8	5.8
75-00-3	64.52	# Chloroethane		<1.5	1.5	1.5	<4.0	4	4
75-69-4	137.36	# Trichlorofluoromethane (F-11)		<1.5	1.5	1.5	<8.4	8.4	8.4
75-35-4	96.95	1,1-Dichloroethene (1,1 DCE)		<1.5	1.5	1.5	<5.9	5.9	5.9
75-09-2	84.93	Dichloromethane (DCM)		<14.4	14.4	14.4	<50	50	50
156-60-5	96.94	Trans-1,2-Dichloroethene		<1.5	1.5	1.5	<5.9	5.9	5.9
75-34-3	98.97	# 1,1-Dichloroethane		<1.5	1.5	1.5	<6.1	6.1	6.1
156-59-2	96.94	# cis-1,2-Dichloroethene		<1	1	1	<4	4	4
594-20-7	112.99	2,2-Dichloropropane		<1.5	1.5	1.5	<6.9	6.9	6.9
74-97-5	129.38	Bromochloromethane (Int Std)		NA	1.5	1.5	NA	7.9	7.9
67-66-3	119.39	# Chloroform		<1.5	1.5	1.5	<7.3	7.3	7.3
71-55-6	133.42	# 1,1,1-Trichloroethane		<1.5	1.5	1.5	<8.2	8.2	8.2
563-58-6	110.97	1,1-Dichloropropene		<1.5	1.5	1.5	<6.8	6.8	6.8
56-23-5	153.84	# Carbon Tetrachloride		<1.5	1.5	1.5	<9.4	9.4	9.4
107-06-2	98.96	# 1,2-Dichloroethane		<1.5	1.5	1.5	<6.1	6.1	6.1
71-43-2	78.11	# Benzene		6.9	1.5	1.5	22	4.8	4.8
79-01-6	131.4	# Trichloroethene (TCE)		<1.5	1.5	1.5	<8.1	8.1	8.1
78-87-5	112.99	# 1,2-Dichloropropane		<1.5	1.5	1.5	<6.9	6.9	6.9
74-95-3	173.83	Dibromomethane		<1.5	1.5	1.5	<10.7	10.7	10.7
75-27-4	163.83	Bromodichloromethane		<1.5	1.5	1.5	<10.1	10.1	10.1
10061-01-5	110.97	# cis-1,3-Dichloropropene		<1.5	1.5	1.5	<6.8	6.8	6.8
108-88-3	92.13	# Toluene		84.8	1.5	1.5	319.5	5.7	5.7
10061-02-6	110.97	trans-1,3-Dichloropropene		<1.5	1.5	1.5	<6.8	6.8	6.8
79-00-5	133.4	# 1,1,2-Trichloroethane		<1.5	1.5	1.5	<8.2	8.2	8.2
127-18-4	165.85	# Tetrachloroethene (PCE)		<1.5	1.5	1.5	<10.2	10.2	10.2
142-28-9	112.99	1,3-Dichloropropane		<1.5	1.5	1.5	<6.9	6.9	6.9
124-48-1	208.28	Dibromochloromethane		<1.5	1.5	1.5	<12.8	12.8	12.8
106-93-4	187.86	# 1,2-Dibromoethane		<1.5	1.5	1.5	<11.5	11.5	11.5
108-90-7	112.56	# Chlorobenzene		<1.5	1.5	1.5	<6.9	6.9	6.9
630-20-6	167.85	1,1,1,2-Tetrachloroethane		<1.5	1.5	1.5	<10.3	10.3	10.3
100-41-4	106.16	# Ethylbenzene		15.6	1.5	1.5	67.7	6.5	6.5
	106.17	# m&p - Xylenes		61.5	1.5	1.5	267	6.5	6.5
95-47-6	106.17	# o-Xylene		15.6	1.5	1.5	67.7	6.5	6.5
100-42-5	104.14	# Styrene		5.1	1.5	1.5	21.7	6.4	6.4
75-25-2	252.77	Bromoform		<1.5	1.5	1.5	<15.5	15.5	15.5
98-82-8	120.19	Isopropylbenzene		<1.5	1.5	1.5	<7.4	7.4	7.4

Client Name: Ivy House Environmental

Reference:IV.58.13Sample Date: 25 Oct 2013Location:Pennycroft, UttoxeterDate of Receipt: 29 Oct 2013

Date Analysed: 4 Nov 2013

Sample ID: WSB

Depth:

Contact:

13/9972

Richard Sutton

JE Job No: 13/9
JE Sample No: 1
Matrix: Air

Method: TM68 VOCs on gases (GC-MS)

Initial Vaccum (inches Hg) -28
Final Pressure (psi) -6
Canister Serial number -

Q* - Qualifiers Key

B Indicates analyte found in associated method blank

++ Indicates value exceeds calibration range

RL Reporting Limit

UKAS Accredited

Cas No	Molecular Weight	Compound	Q*	Result	RL	MDL	Result	RL	MDL
				ppbv	ppbv	ppbv	ug/m ³	ug/m ³	ug/m ³
79-34-5	167.85	# 1,1,2,2-Tetrachloroethane		<1.5	1.5	1.5	<10.3	10.3	10.3
108-86-1	157.01	Bromobenzene		<1.5	1.5	1.5	<9.6	9.6	9.6
96-18-4	147.43	1,2,3-Trichloropropane		<1.5	1.5	1.5	<9.0	9	9
103-65-1	120.19	Propylbenzene		<1.5	1.5	1.5	<7.4	7.4	7.4
95-49-8	126.58	2-Chlorotoluene		<1.5	1.5	1.5	<7.8	7.8	7.8
108-67-8	120.2	# 1,3,5-Trimethylbenzene		3.1	1.5	1.5	15.2	7.4	7.4
106-43-4	126.58	4-Chlorotoluene		<1.5	1.5	1.5	<7.8	7.8	7.8
98-06-6	134.22	Tert-Butylbenzene		<1.5	1.5	1.5	<8.2	8.2	8.2
95-63-6	120.19	# 1,2,4-Trimethylbenzene		9.2	1.5	1.5	45.2	7.4	7.4
135-98-8	134.22	Sec-Butylbenzene		<1.5	1.5	1.5	<8.2	8.2	8.2
99-87-6	134.22	4-Isopropyltoluene		<1.5	1.5	1.5	<8.2	8.2	8.2
106-46-7	147.01	# 1,4-Dichlorobenzene		<1.5	1.5	1.5	<9.0	9	9
541-73-1	147.01	# 1,3-Dichlorobenzene		<1.5	1.5	1.5	<9.0	9	9
104-51-8	134.22	n-Butylbenzene		<1.5	1.5	1.5	<8.2	8.2	8.2
95-50-1	147	# 1,2-Dichlorobenzene		<1.5	1.5	1.5	<9.0	9	9
96-12-8	236.33	1,2-Dibromo-3-chloropropane		<1.5	1.5	1.5	<14.5	14.5	14.5
120-82-1	181.46	1,2,4-Trichlorobenzene		<1.5	1.5	1.5	<11.1	11.1	11.1
87-68-3	260.76	Hexachlorobutadiene		<1.5	1.5	1.5	<16.0	16	16
91-20-3	128.17	Naphthalene		<0.32	0.32	0.32	<1.7	1.7	1.7
87-61-6	181.45	1,2,3-Trichlorobenzene		<1.5	1.5	1.5	<11.1	11.1	11.1
1634-04-4	88.15	Methyl tertiary butyl ether		<1.5	1.5	1.5	<5.4	5.4	5.4
		Sum of VOC USEPA compounds		201.8			826		
460-00-4		4-Bromofluorobenzene Surrogate Recovery		89%	0%	0%			

Ivy House Environmental Client Name:

IV.58.13 Reference:

Sample Date: 25 Oct 2013 Location: Pennycroft, Uttoxeter Date of Receipt: 29 Oct 2013 Richard Sutton Date Analysed: 4 Nov 2013 Contact:

Sample ID: WSA2

Depth:

JE Job No: 13/9972 JE Sample No: 2

Matrix: Air

Method: TM68 VOCs on gases (GC-MS)

Initial Vaccum (inches Hg) -25 Final Pressure (psi) -3 Canister Serial number

Q* - Qualifiers Key

Indicates analyte found in associated method blank MDL В Method Detection Limit Indicates value exceeds calibration range RL Reporting Limit UKAS Accredited #

Cas No	Molecular Weight	Compound	Q*	Result	RL	MDL	Result	RL	MDL
		·		ppbv	ppbv	ppbv	ug/m³	ug/m ³	ug/m³
75-01-4	62.5	# Vinyl Chloride		<1.5	1.5	1.5	<3.8	3.8	3.8
75-71-8	120.91	Dichlorodifluoromethane (F-12)		<2.5	2.5	2.5	<12.4	12.4	12.4
74-87-3	50.49	Chloromethane		<1.5	1.5	1.5	<3.1	3.1	3.1
74-83-9	94.95	Bromomethane		<1.5	1.5	1.5	<5.8	5.8	5.8
75-00-3	64.52	# Chloroethane		<1.5	1.5	1.5	<4.0	4	4
75-69-4	137.36	# Trichlorofluoromethane (F-11)		<1.5	1.5	1.5	<8.4	8.4	8.4
75-35-4	96.95	1,1-Dichloroethene (1,1 DCE)		<1.5	1.5	1.5	<5.9	5.9	5.9
75-09-2	84.93	Dichloromethane (DCM)		<14.4	14.4	14.4	<50	50	50
156-60-5	96.94	Trans-1,2-Dichloroethene		<1.5	1.5	1.5	<5.9	5.9	5.9
75-34-3	98.97	# 1,1-Dichloroethane		<1.5	1.5	1.5	<6.1	6.1	6.1
156-59-2	96.94	# cis-1,2-Dichloroethene		6	1	1	24	4	4
594-20-7	112.99	2,2-Dichloropropane		<1.5	1.5	1.5	<6.9	6.9	6.9
74-97-5	129.38	Bromochloromethane (Int Std)		NA	1.5	1.5	NA	7.9	7.9
67-66-3	119.39	# Chloroform		<1.5	1.5	1.5	<7.3	7.3	7.3
71-55-6	133.42	# 1,1,1-Trichloroethane		1.8	1.5	1.5	9.8	8.2	8.2
563-58-6	110.97	1,1-Dichloropropene		<1.5	1.5	1.5	<6.8	6.8	6.8
56-23-5	153.84	# Carbon Tetrachloride		<1.5	1.5	1.5	<9.4	9.4	9.4
107-06-2	98.96	# 1,2-Dichloroethane		<1.5	1.5	1.5	<6.1	6.1	6.1
71-43-2	78.11	# Benzene		14.2	1.5	1.5	45.4	4.8	4.8
79-01-6	131.4	# Trichloroethene (TCE)		<1.5	1.5	1.5	<8.1	8.1	8.1
78-87-5	112.99	# 1,2-Dichloropropane		<1.5	1.5	1.5	<6.9	6.9	6.9
74-95-3	173.83	Dibromomethane		<1.5	1.5	1.5	<10.7	10.7	10.7
75-27-4	163.83	Bromodichloromethane		<1.5	1.5	1.5	<10.1	10.1	10.1
10061-01-5	110.97	# cis-1,3-Dichloropropene		<1.5	1.5	1.5	<6.8	6.8	6.8
108-88-3	92.13	# Toluene		86.7	1.5	1.5	326.7	5.7	5.7
10061-02-6	110.97	trans-1,3-Dichloropropene		<1.5	1.5	1.5	<6.8	6.8	6.8
79-00-5	133.4	# 1,1,2-Trichloroethane		<1.5	1.5	1.5	<8.2	8.2	8.2
127-18-4	165.85	# Tetrachloroethene (PCE)		<1.5	1.5	1.5	<10.2	10.2	10.2
142-28-9	112.99	1,3-Dichloropropane		<1.5	1.5	1.5	<6.9	6.9	6.9
124-48-1	208.28	Dibromochloromethane		<1.5	1.5	1.5	<12.8	12.8	12.8
106-93-4	187.86	# 1,2-Dibromoethane		<1.5	1.5	1.5	<11.5	11.5	11.5
108-90-7	112.56	# Chlorobenzene		<1.5	1.5	1.5	<6.9	6.9	6.9
630-20-6	167.85	1,1,1,2-Tetrachloroethane		<1.5	1.5	1.5	<10.3	10.3	10.3
100-41-4	106.16	# Ethylbenzene		11.9	1.5	1.5	51.7	6.5	6.5
	106.17	# m&p - Xylenes		41.5	1.5	1.5	180.2	6.5	6.5
95-47-6	106.17	# o-Xylene		11.5	1.5	1.5	49.9	6.5	6.5
100-42-5	104.14	# Styrene		61.5	1.5	1.5	261.9	6.4	6.4
75-25-2	252.77	Bromoform		<1.5	1.5	1.5	<15.5	15.5	15.5
98-82-8	120.19	Isopropylbenzene		<1.5	1.5	1.5	<7.4	7.4	7.4

Client Name: Ivy House Environmental

Reference:IV.58.13Sample Date: 25 Oct 2013Location:Pennycroft, UttoxeterDate of Receipt: 29 Oct 2013Contact:Richard SuttonDate Analysed: 4 Nov 2013

Sample ID: WSA2

Depth:

13/9972

JE Job No: 13/ JE Sample No: 2 Matrix: Air

Method: TM68 VOCs on gases (GC-MS)

Initial Vaccum (inches Hg) -25
Final Pressure (psi) -3
Canister Serial number -

Q* - Qualifiers Key

B Indicates analyte found in associated method blank

++ Indicates value exceeds calibration range

RL Reporting Limit

UKAS Accredited

Cas No	Molecular Weight	Compound	Q*	Result	RL	MDL	Result	RL	MDL
				ppbv	ppbv	ppbv	ug/m ³	ug/m ³	ug/m ³
79-34-5	167.85	# 1,1,2,2-Tetrachloroethane		<1.5	1.5	1.5	<10.3	10.3	10.3
108-86-1	157.01	Bromobenzene		<1.5	1.5	1.5	<9.6	9.6	9.6
96-18-4	147.43	1,2,3-Trichloropropane		<1.5	1.5	1.5	<9.0	9	9
103-65-1	120.19	Propylbenzene		<1.5	1.5	1.5	<7.4	7.4	7.4
95-49-8	126.58	2-Chlorotoluene		<1.5	1.5	1.5	<7.8	7.8	7.8
108-67-8	120.2	# 1,3,5-Trimethylbenzene		1.8	1.5	1.5	8.8	7.4	7.4
106-43-4	126.58	4-Chlorotoluene		<1.5	1.5	1.5	<7.8	7.8	7.8
98-06-6	134.22	Tert-Butylbenzene		<1.5	1.5	1.5	<8.2	8.2	8.2
95-63-6	120.19	# 1,2,4-Trimethylbenzene		5.2	1.5	1.5	25.6	7.4	7.4
135-98-8	134.22	Sec-Butylbenzene		<1.5	1.5	1.5	<8.2	8.2	8.2
99-87-6	134.22	4-Isopropyltoluene		<1.5	1.5	1.5	<8.2	8.2	8.2
106-46-7	147.01	# 1,4-Dichlorobenzene		<1.5	1.5	1.5	<9.0	9	9
541-73-1	147.01	# 1,3-Dichlorobenzene		<1.5	1.5	1.5	<9.0	9	9
104-51-8	134.22	n-Butylbenzene		<1.5	1.5	1.5	<8.2	8.2	8.2
95-50-1	147	# 1,2-Dichlorobenzene		<1.5	1.5	1.5	<9.0	9	9
96-12-8	236.33	1,2-Dibromo-3-chloropropane		<1.5	1.5	1.5	<14.5	14.5	14.5
120-82-1	181.46	1,2,4-Trichlorobenzene		<1.5	1.5	1.5	<11.1	11.1	11.1
87-68-3	260.76	Hexachlorobutadiene		<1.5	1.5	1.5	<16.0	16	16
91-20-3	128.17	Naphthalene		<0.32	0.32	0.32	<1.7	1.7	1.7
87-61-6	181.45	1,2,3-Trichlorobenzene		<1.5	1.5	1.5	<11.1	11.1	11.1
1634-04-4	88.15	Methyl tertiary butyl ether		<1.5	1.5	1.5	<5.4	5.4	5.4
		Sum of VOC USEPA compounds		242.1			984		
460-00-4		4-Bromofluorobenzene Surrogate Recovery		89%	0%	0%			

Client Name: Ivy House Environmental

IV.58.13 Reference:

Sample Date: 25 Oct 2013 Location: Pennycroft, Uttoxeter Date of Receipt: 29 Oct 2013 Richard Sutton Date Analysed: 4 Nov 2013 Contact:

Sample ID: WSI

Depth:

JE Job No: 13/9972 JE Sample No: 3 Matrix: Air

TM68 VOCs on gases (GC-MS) Method:

Initial Vaccum (inches Hg) -28 Final Pressure (psi) -3 Canister Serial number

Q* - Qualifiers Key

Indicates analyte found in associated method blank MDL В Method Detection Limit Indicates value exceeds calibration range RL Reporting Limit UKAS Accredited #

Cas No	Molecular Weight	Compound	Q*	Result	RL	MDL	Result	RL	MDL
		·		ppbv	ppbv	ppbv	ug/m³	ug/m ³	ug/m ³
75-01-4	62.5	# Vinyl Chloride		<1.5	1.5	1.5	<3.8	3.8	3.8
75-71-8	120.91	Dichlorodifluoromethane (F-12)		<2.5	2.5	2.5	<12.4	12.4	12.4
74-87-3	50.49	Chloromethane		<1.5	1.5	1.5	<3.1	3.1	3.1
74-83-9	94.95	Bromomethane		<1.5	1.5	1.5	<5.8	5.8	5.8
75-00-3	64.52	# Chloroethane		<1.5	1.5	1.5	<4.0	4	4
75-69-4	137.36	# Trichlorofluoromethane (F-11)		<1.5	1.5	1.5	<8.4	8.4	8.4
75-35-4	96.95	1,1-Dichloroethene (1,1 DCE)		<1.5	1.5	1.5	<5.9	5.9	5.9
75-09-2	84.93	Dichloromethane (DCM)		<14.4	14.4	14.4	<50	50	50
156-60-5	96.94	Trans-1,2-Dichloroethene		<1.5	1.5	1.5	<5.9	5.9	5.9
75-34-3	98.97	# 1,1-Dichloroethane		<1.5	1.5	1.5	<6.1	6.1	6.1
156-59-2	96.94	# cis-1,2-Dichloroethene		<1	1	1	<4	4	4
594-20-7	112.99	2,2-Dichloropropane		<1.5	1.5	1.5	<6.9	6.9	6.9
74-97-5	129.38	Bromochloromethane (Int Std)		NA	1.5	1.5	NA	7.9	7.9
67-66-3	119.39	# Chloroform		<1.5	1.5	1.5	<7.3	7.3	7.3
71-55-6	133.42	# 1,1,1-Trichloroethane		<1.5	1.5	1.5	<8.2	8.2	8.2
563-58-6	110.97	1,1-Dichloropropene		<1.5	1.5	1.5	<6.8	6.8	6.8
56-23-5	153.84	# Carbon Tetrachloride		<1.5	1.5	1.5	<9.4	9.4	9.4
107-06-2	98.96	# 1,2-Dichloroethane		<1.5	1.5	1.5	<6.1	6.1	6.1
71-43-2	78.11	# Benzene		<1.5	1.5	1.5	<4.8	4.8	4.8
79-01-6	131.4	# Trichloroethene (TCE)		<1.5	1.5	1.5	<8.1	8.1	8.1
78-87-5	112.99	# 1,2-Dichloropropane		<1.5	1.5	1.5	<6.9	6.9	6.9
74-95-3	173.83	Dibromomethane		<1.5	1.5	1.5	<10.7	10.7	10.7
75-27-4	163.83	Bromodichloromethane		<1.5	1.5	1.5	<10.1	10.1	10.1
10061-01-5	110.97	# cis-1,3-Dichloropropene		<1.5	1.5	1.5	<6.8	6.8	6.8
108-88-3	92.13	# Toluene		13.6	1.5	1.5	51.2	5.7	5.7
10061-02-6	110.97	trans-1,3-Dichloropropene		<1.5	1.5	1.5	<6.8	6.8	6.8
79-00-5	133.4	# 1,1,2-Trichloroethane		<1.5	1.5	1.5	<8.2	8.2	8.2
127-18-4	165.85	# Tetrachloroethene (PCE)		<1.5	1.5	1.5	<10.2	10.2	10.2
142-28-9	112.99	1,3-Dichloropropane		<1.5	1.5	1.5	<6.9	6.9	6.9
124-48-1	208.28	Dibromochloromethane		<1.5	1.5	1.5	<12.8	12.8	12.8
106-93-4	187.86	# 1,2-Dibromoethane		<1.5	1.5	1.5	<11.5	11.5	11.5
108-90-7	112.56	# Chlorobenzene		<1.5	1.5	1.5	<6.9	6.9	6.9
630-20-6	167.85	1,1,1,2-Tetrachloroethane		<1.5	1.5	1.5	<10.3	10.3	10.3
100-41-4	106.16	# Ethylbenzene		<1.5	1.5	1.5	<6.5	6.5	6.5
	106.17	# m&p - Xylenes		3.9	1.5	1.5	16.9	6.5	6.5
95-47-6	106.17	# o-Xylene		1.6	1.5	1.5	6.9	6.5	6.5
100-42-5	104.14	# Styrene		<1.5	1.5	1.5	<6.4	6.4	6.4
75-25-2	252.77	Bromoform		<1.5	1.5	1.5	<15.5	15.5	15.5
98-82-8	120.19	Isopropylbenzene		<1.5	1.5	1.5	<7.4	7.4	7.4

Client Name: Ivy House Environmental

Reference:IV.58.13Sample Date: 25 Oct 2013Location:Pennycroft, UttoxeterDate of Receipt: 29 Oct 2013Contact:Richard SuttonDate Analysed: 4 Nov 2013

Sample ID: WSI

Depth:

13/9972

JE Job No: 13/9
JE Sample No: 3
Matrix: Air

Method: TM68 VOCs on gases (GC-MS)

Initial Vaccum (inches Hg) -28
Final Pressure (psi) -3
Canister Serial number -

Q* - Qualifiers Key

B Indicates analyte found in associated method blank

++ Indicates value exceeds calibration range

RL Reporting Limit

UKAS Accredited

Cas No	Molecular Weight	Compound	Q*	Result	RL	MDL	Result	RL	MDL
				ppbv	ppbv	ppbv	ug/m³	ug/m ³	ug/m ³
79-34-5	167.85	# 1,1,2,2-Tetrachloroethane		<1.5	1.5	1.5	<10.3	10.3	10.3
108-86-1	157.01	Bromobenzene		<1.5	1.5	1.5	<9.6	9.6	9.6
96-18-4	147.43	1,2,3-Trichloropropane		<1.5	1.5	1.5	<9.0	9	9
103-65-1	120.19	Propylbenzene		<1.5	1.5	1.5	<7.4	7.4	7.4
95-49-8	126.58	2-Chlorotoluene		<1.5	1.5	1.5	<7.8	7.8	7.8
108-67-8	120.2	# 1,3,5-Trimethylbenzene		<1.5	1.5	1.5	<7.4	7.4	7.4
106-43-4	126.58	4-Chlorotoluene		<1.5	1.5	1.5	<7.8	7.8	7.8
98-06-6	134.22	Tert-Butylbenzene		<1.5	1.5	1.5	<8.2	8.2	8.2
95-63-6	120.19	# 1,2,4-Trimethylbenzene		3.4	1.5	1.5	16.7	7.4	7.4
135-98-8	134.22	Sec-Butylbenzene		<1.5	1.5	1.5	<8.2	8.2	8.2
99-87-6	134.22	4-Isopropyltoluene		<1.5	1.5	1.5	<8.2	8.2	8.2
106-46-7	147.01	# 1,4-Dichlorobenzene		<1.5	1.5	1.5	<9.0	9	9
541-73-1	147.01	# 1,3-Dichlorobenzene		<1.5	1.5	1.5	<9.0	9	9
104-51-8	134.22	n-Butylbenzene		<1.5	1.5	1.5	<8.2	8.2	8.2
95-50-1	147	# 1,2-Dichlorobenzene		<1.5	1.5	1.5	<9.0	9	9
96-12-8	236.33	1,2-Dibromo-3-chloropropane		<1.5	1.5	1.5	<14.5	14.5	14.5
120-82-1	181.46	1,2,4-Trichlorobenzene		<1.5	1.5	1.5	<11.1	11.1	11.1
87-68-3	260.76	Hexachlorobutadiene		<1.5	1.5	1.5	<16.0	16	16
91-20-3	128.17	Naphthalene		<0.32	0.32	0.32	<1.7	1.7	1.7
87-61-6	181.45	1,2,3-Trichlorobenzene		<1.5	1.5	1.5	<11.1	11.1	11.1
1634-04-4	88.15	Methyl tertiary butyl ether		<1.5	1.5	1.5	<5.4	5.4	5.4
		Sum of VOC USEPA compounds		22.5			91.7		
460-00-4		4-Bromofluorobenzene Surrogate Recovery		87%	0%	0%			

Client Name: Ivy House Environmental

Reference: IV.58.13

Location: Pennycroft, Uttoxeter

Contact: Richard Sutton

J E Job No.	Batch	Sample ID	Depth	J E Sample No.		Reason
No deviating sample report results for job 13/9972						

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 13/9972

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory . It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

NOTE

Data is only accredited when all the requirements of our Quality System have been met. In certain circumstances where the requirements have not been met, the laboratory may issue the data in an interim report but will remove the accreditation, in this instance results should be considered indicative only. Where possible samples will be re-extracted and a final report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance.
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
СО	Suspected carry over
OC	Outside Calibration Range
NFD	No Fibres Detected

JE Job No: 13/9972

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM68	VOCs on gases (GC-MS)	PM0	No preparation is required.				
TM68	VOCs on gases (GC-MS)	PM0	No preparation is required.	Yes			
NONE	No Method Code	NONE	No Method Code				

APPENDIX H

GAS & GROUNDWATER MONITORING

Site: Pennycroft, Uttoxeter Project ref: IV.58.13

Project ref: IV.58.13
Date: 25.10.13
Operator: R Sutton

			GAS			GROUNDWATER						
	CH4 (% Vol)	CO2 (% Vol)	O2 (% Vol)	Atmospheric Pressure (mb)	Flow Rate (l/hr)	Dip to Water (m)	Dip to Base (m)	Datum (mAOD)*	Groundwater Datum (mAOD)			
WSK	0.2	6.6	15.4	991	0	DRY	2.48	84.5	N/A			
BWBBH7	0.1	2.6	18.2	991	0	2.71	7.83	84.74	82.03			
WSB	0.1	1	13.2	991	0.1	0.6	2.35	84.9	84.3			
WSL	0	2.1	18.7	991	0.2	1.765	2.56	84.4	82.635			
WSA2	0.1	0	20.1	991	0.1	0.51	1.98	84.75	84.24			
WSE	0.1	0.4	19.4	991	0.1	2.085	3.78	84.8	82.715			
WSI	0.1	0.5	20.2	991	0	0.6	2.82	83.8	83.2			

^{*}approximate datum

Confirmed as true and accurate readings:

GAS & GROUNDWATER MONITORING

Site: Pennycroft, Uttoxeter

Project ref: IV.58.13 Date: 11.11.13 Operator: R Sutton

			GAS			GROUNDWATER						
	CH4 (% Vol)	CO ₂ (% Vol)	O2 (% Vol)	Atmospheric Pressure (mb)	Flow Rate (l/hr)	Dip to Water (m)	Dip to Base (m)	Datum (mAOD)*	Groundwater Datum (mAOD)			
WSK	0.1	3.4	13.8	1008	0	DRY	2.48	84.5	N/A			
BWBBH7	0.1	0.1	20.9	1008	0	2.65	7.83	84.74	82.09			
WSB	0.1	1.7	7.4	1008	0.2	0.6	2.35	84.9	84.3			
WSL	0.1	0.7	18.7	1008	0.1	1.93	2.56	84.4	82.47			
WSA2	0.1	0.1	20.9	1008	0.1	0.55	1.98	84.75	84.2			
WSE	0.1	0.3	20.1	1008	0	1.915	3.78	84.8	82.885			
wsı	0.1	0.2	20.9	1008	0	0.64	2.82	83.8	83.16			

^{*}approximate datum

Confirmed as true and accurate readings:

GAS & GROUNDWATER MONITORING

Site: Pennycroft, Uttoxeter

Project ref: IV.58.13
Date: 18.11.13
Operator: R Sutton

			GAS			GROUNDWATER						
	CH4 (% Vol)	CO2 (% Vol)	O2 (% Vol)	Atmospheric Pressure (mb)	Flow Rate (I/hr)	Dip to Water (m)	Dip to Base (m)	Datum (mAOD)*	Groundwater Datum (mAOD)			
WSK	0.1	4.8	12.8	1000	0	DRY	2.48	84.5	N/A			
BWBBH7	0.1	3.3	18.3	1000	0	2.65	7.83	84.74	82.09			
WSB	0.1	1.8	6.4	1000	0.2	0.56	2.35	84.9	84.34			
WSL	0.1	1.3	21.1	1000	0.1	1.93	2.56	84.4	82.47			
WSA2	0.1	6.2	8.3	1000	0.1	0.52	1.98	84.75	84.23			
WSE	0.1	0.9	19.7	1000	0	1.91	3.78	84.8	82.89			
wsı	0.1	0.2	20.9	1000	0	0.64	2.82	83.8	83.16			

^{*}approximate datum

Confirmed as true and accurate readings:

APPENDIX I

Cliente-flient ref: ESBC Project ref: IV.58.13 Site ref: Pennycroft, Uttaxeter Data dacroiption: Metals Contaminant(r): Metals Textreonario: Planning Date: 14.11.13 Uter details: RPS	Arsenic	Cadmium		Cr VI		Lead	Mercury	Nickel	Selenium	Zinc	Cganide (Total)	Cyanide (Complex)	Cyanide (Free)	Phenois	Thiocyanat e	Copper	Cr Total
Critical concentration, C.	32	10		32		450	170	130	350	3700	34	213	43	415		2300	2500
Notes																	
Sample size, n	38	35	0	12	0	37	38	38	38	36	12	24	23	26	11	38	38
Sample mean, $\overline{\chi}$	13.2336842	0.84022857	No Data	2	No Data	105.035135	0.80436842	24.7615789	2.83821053	89.0666667	2	955.802083	1.43478261	1.04153846	3	51.0973684	23.2526316
Standard deviation, s	11.3004627	0.86504924		0		110.36297	0.76605068	13.4875153	1.8908501	69.3139648	0	4525.52626	0.5068698	0.90493621	0	42.747584	14.5090603
Number of non-detects	0	0		0		0	0	0	0	0	0	0	0	0	0	0	0
Set non-detect values to:	Half dotection limi	Half detection limi	Half detection limi	Half detection limi	Half detection limi	Half dotoction limi	Half dotoction limi	Half detection limi	Half detection limi	Half dotection limi	Half detection limi	Half dotection limi	Half detection lim	Half dotoction limi	Half detection limi	Half detection limi	Half detection limi
Outliers?	Yes	Yes		No		Yes	Yes	No	Yes	Yes	No	Yes	No	No	No	Yes	Yes
Distribution	Non-normal	Non-normal		Single value		Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Single value	Non-normal	Non-normal	Non-normal	Single value	Non-normal	Non-normal
Statistical approach	Auto: Chebychev	Chobychov	Chobychov	Auto: Chabychau	Chobychov	Auta: Chobychov	Auta: Chobychov	Auta: Chobychov	Auta: Chobychov	Auto: Chobychov	Auta: Chobychov	Auta: Chobychov	Auta: Chobychov	Auto: Chebychev	Auta: Chobychov	Auta: Chobychov	Auta: Chobycho
Test scenario:	Planning: ir truo m	oan lawor than critic	al concentration (y.	«Ce)? ▼	Evidence le	vel required:	95%	Uro Normal distrib	ution to test for outli	iotz 🔻							
t statistic, t. (or k.)	-10.23704456	-62.64376209		N/A		-19.01307437	-1361.518171	-48.09879242	-1131.791987	-312.5719336	N/A	0.804099227	-393.2761019	-2332.520522	N/A	-324.302933	-1052.287043
Upper confidence limit (on true mean concentration, μ)	21.224318	1.47758681		2		184.121082	1.34604805	34.2986924	4.17524346	139.422095	2	4982.41859	1.89547315	1.81512355	3	81.324475	33.5120865
Evidence level	99%	100%		100%		100%	100%	100%	100%	100%	100%	0%	100%	100%		100%	100%
Base decision on:	avidanca laval	avidanca laval		avidanca laval		avidanca laval	avidanca laval	avidanca laval	avidanca laval	avidanca laval	ovidonco lovol	avidanca laval	ovidonco lovol	evidence level	lawerbound	ovidonco lovol	ovidonco lovol
Result	μ < Cc	μ « Co		μ « Cc		μ < Cc	µ < Cc	µ < Cc	µ < Co	μ < Cc	μ < Co	μ≥ Cc	μ « Co	µ < Cc		µ < Cc	μ < Cc
Select dataset	Οv	O۷	O٧	O٧	O۷	O۲	O٧	O۷	O٧	O۷	O٧	® γ	O٧	O۷	O٧	O٧	O٧
Back to data	Go to	outlier te	st	Go to no	rmality to	est	Showin	dividual	summar	у							

METALS – FULL DATASET

ClienteldientroftESBC ProjectroftWS8.13 SiteroftPennycroft, Uttaxeter Data dazcription: Matalu Contaminant(t): Matalu Textracentria: Planning Date: 14.11.13 Let dadit; PRS	Arsenic	Cadmium		Cr VI		Lead	Mercury	Nickel	Selenium	Zinc	Cganide (Total)	Cyanide (Complex)	Cyanide (Free)	Phenois	Thiocyanat e	Copper	Cr Total
Critical concentration, C.	32	10		32		450	170	130	350	3700	34	213	43	415	34	2300	2500
Notes																	
Sample size, n	36	30	0	12	0	36	37	38	36	33	12	20	23	26	11	36	34
Sample mean, $\overline{\chi}$	11.33	0.52893333	No Data	2	No Data	91.4527778	0.69908108	24.7615789	2.44033333	73.3757576	2	6.0125	1.43478261	1.04153846	3	44.1305556	19.0705882
Standard deviation, s	7.97193577	0.17536896		0		74.2104209	0.4125375	13.4875153	0.82816734	27.0180499	0	6.21480056	0.5068698	0.90493621	0	30.6075231	6.51755343
Number of non-detects	0	0		0		0	0	0	0	0	0	0	0	0	0	0	0
Set non-detect values to:	Half detection limi	Half dotoction limi	Half detection limi	Half dotoction limi	Half detection limi	Half dotection limi	Half dotoction limi	Half detection limi	Half dotection limi	Half detection limi	Half detection limi	Half detection limi	Half dotoction limi	Half detection limi	Half dotection limi	Half dotoction limi	Half dotoction limi
Outliers?	No	No		No		No	No	No	No	No	No	No	No	No	No	No	No
Distribution	Non-normal	Non-normal		Single value		Non-normal	Non-normal	Non-normal	Non-normal	Normal	Single value	Non-normal	Non-normal	Non-normal	Single value	Non-normal	Normal
Statistical approach	Auta: Chobychov	Chobychov	Chebychev	Auto: Chabychau	Chobychov	Auta: Chobychov	Auto: Chobychov	Auta: Chobychov	Auto: Chobychov	Auta: Ono-zamplo (Auta: Chobychov	Auta: Chobychov	Auta: Chobychov	Auto: Chobychov	Auta: Chobychov	Auta: Chobychov	Auta: Ono-samp
Test scenario:	Planning: ir true m	ean lawer than critic	cal concentration (y.	«C«)?	Evidence le	vel required:	95%	Uro Normal distrib	ution to test for outli	orr 🔻							
t statistic, t _e (or k _e)	-15.55707466	-295.8058787		N/A		-28.98896555	-2496.299826	-48.09879242	-2518.03941	-771.0908172	N/A	-148.9470549	-393.2761019	-2332.520522	N/A	-442.2186218	-2219.572147
Upper confidence limit (on true mean concentration, μ)	17.1214771	0.66849588		2		145.365399	0.99470486	34.2986924	3.04198296	81.3425206	2	12.0699383	1.89547315	1.81512355	3	66.3664055	20.9622259
Evidence level	100%	100%		100%		100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Base decision on:	ovidence level	evidence level		evidence level		evidence level	avidanca laval	ovidence level	evidence level	ovidence level	avidanca laval	avidanca laval	evidence level	avidanca laval	evidence level	avidanca laval	avidanca laval
Result	μ ∢ Ce	д « Сс		µ < Cc		µ < Cc	µ < Cc	р ∢ Сс	µ < Cc	µ ∢ Cc	µ < Cc	р ∢ Сс	µ < Cc	µ < Cc	µ < Cc	µ < Cc	μ ∢ Cc
Select dataset	O٧	O۷	O٧	O۷	Ον	O۲	O٧	Ον	O٧	Ον	O۷	O٧	O٧	O٧	O٧	O۷	® γ
Back to data	Go to	outlier te	est	Go to no	rmality t	est	Showin	dividual	summar	у							

METALS – OUTLIERS REMOVED

Clientfelient ref: ESBO Project ref: IV, 58,13 Site ref: Penny craft, Uttaxeter Dete decreption: Metale Conteminant(): PAHY Testreconaries Pestreconaries Dete: 1,41,113 Uter details: RPS	Naphthalen e	Acenaphthy lene	Acenaphth ene	Fluorene	Phenanthre ne	Anthracene	Fluoranthe ne	Pgrene	Benzo(a) anthracene	Chrysene	Benzo(b) fluoranthen e	Benzo(k) fluoranthen e	Benzo(a) pyrene	Indeno(1,2, 3-cd)pyrene	Dibenz(a,h) anthracene	Benzo(ghi) perglene
Critical concentration, C.	8.7	850	1000	780	380	9200	670	1600	5.9	9	7	10	1	4.2	0.9	43
Notes																
Sample size, n	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
Sample mean, $\overline{\chi}$	2.80344231		0.58418846									4.94051923	8.41889231	5.52726923		6.33735769
Standard deviation, s	8.98034054			3.43798253	43.4730523		57.7681244		17.6370986		21.1269937	7.80870519	12.4807667	9.04068913	2.07344688	10.0996331
Number of non-detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Set non-detect values to:	Half dotection limi		Half detection limi	Half dotection limi	Half detection limi	Half dotection limi	Half detection limi	Half detection limi	Half detection limi	Half detection limi	Half detection limi	Half detection limi	Half dotection limi	Half detection limi	Half dotection limi	Half detection limi
Outliers?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Distribution	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal
Statistical approach	Auta: Chobychov	Chebychev	Auto: Chabychau	Auta: Chobychov	Auta: Chobychov	Auta: Chebychev	Auto: Chobychov	Auta: Chobychov	Auta: Chobychov	Auta: Chobychov	Auta: Chobychov	Auta: Chobychov	Auta: Chobychov	Auto: Chabychau	Auta: Chobychov	Auto: Chobychov
Test scenario:	Planning: ir true m	oan lawor than critic	al concentration (y.	(Ca)?	Evidence le	vel required:	95%	Uro Normal distrib	ution to test for outli	orr 🔻						
t statistic, t _e (or k _e)	-3.348053741	-2057.839074	-5621.782279	-1154.540812	-42.40764044	-6546.383745	-56.60522843	-188.0887789	1.344821877	0.272057089	1.507793504	-3.303798843	3.030989805	0.748590247	0.891932737	-18.50993269
Upper confidence limit (on true mean concentration, μ)	10.4802901	3.07292782	1.35909441	4.49692233	55.6052952	10.0880534	78.087682	59.0097114	25.6287118	24.5686494	31.307727	11.6157941	19.0880809	13.2557061	3.03517924	14.9710332
Evidence level	92%	100%	100%	100%	100%	100%	100%	100%	0%	0%	0%	92%	0%	0%	0%	100%
Base decision on:	evidence level	evidence level	avidanca laval	ovidonco lovol	evidence level	ovidonco lovol	evidence level	ovidence level	ovidonco lovol	ovidence level	evidence level	ovidence level	ovidonco lovol	avidanca laval	evidence level	evidence level
Result	μ≈≥ Cc	µ < Co	µ < Cc	μ « Co	µ < Cc	µ ∢ Сс	µ < Cc	μ « Cc	μ≥ Cc	μ≥ Cc	μ≥ Cc	μ≪≥ Cc	μ≥ Cc	μ≥ Cc	μ≥ Cc	µ < Co
Select dataset	® γ	O٧	O٧	O۷	Ον	O۲	O٧	O۷	O٧	O٧	O٧	O۲	O۲	O٧	O٧	O٧
Back to data	Go to outlier test Go to normality test Show individual summary															

Olient/clientref:ESBC Projectref:IV.98.13 Site ref: Penyoraft, Utauxeter Data durcriptian: Motals Cantaminan(f):PAHY Tartecenaris: Planning Date: 14.11.13 User datalir:RPS	Naphthalen e	Acenaphthy lene	Acenaphth ene	Fluorene	Phenanthre ne	Anthracene	Fluoranthe ne	Pyrene	Benzo(a) anthracene	Chrysene	Benzo(b) fluoranthen e	Benzo(k) fluoranthen e	Benzo(a) pgrene	Indeno(1,2, 3-cd)pyrene	Dibenz(a,h) anthracene	Benzo(ghi) perglene
Critical concentration, C.	8.7	850	1000	780	380	9200	670	1600	5.9	9	7	10	1	4.2	0.9	43
Notes																
Sample size, n	21	24	22	20	22	22	22	23	23	23	24	23	23	24	24	24
Sample mean, $\overline{\chi}$	0.35045238	0.7585125	0.23949545	0.27385	3.45912727	1.21214091	8.5645	8.51794783	4.96706087	4.35565652	7.85958333	2.48058696	4.64744348	3.23370833	0.73541667	3.77797083
Standard deviation, s	0.39753982	1.0437897	0.21767308	0.27275096	3.57471703	1.35253811	9.36078816	9.53465056	5.96071205	5.07180456	9.3538263	3.01207976	5.73771046	4.04805354	0.94181217	4.3972118
Number of non-detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Set non-detect values to:	Half detection limi	Half dotoction limi	Half dotoction limi	Half detection limi	Half detection limi	Half detection limi	Half detection limi	Half detection limi	Half detection limi	Half detection limi	Half detection limi	Half detection limi	Half detection limi	Half dotoction limi	Half detection limi	Half detection limi H
Outliers?	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Distribution	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal
Statistical approach	Auta: Chebychev	Chobychov	Auta: Chobychov	Auto: Chebychev	Auta: Chobychov	Auta: Chebychev	Auta: Chebychev	Auta: Chobychov	Auta: Chobychov	Auta: Chabychau	Auta: Chobychov	Auta: Chebychev	Auta: Chebychev	Auta: Chobychov	Auto: Chebychev	Auto: Chobychov A
Test scenario:	Planning: is true m	oan lawor than critic	al cancontration (y. :	(Ca)?	Evidence le	vel required:	95%	Uro Normal distrib	ution to test for outli	iorz 🔻						
t statistic, t, (or k,)	-96.24805285	-3985.876313	-21542.82221	-12784.70792	-494.0623918	-31900.12842	-331.4258842	-800.4991629	-0.75061819	-4.391629957	0.450198772	-11.9724048	3.048694165	-1.169412165	-0.856105281	-43.69767135
Upper confidence limit (on true mean concentration, μ)	0.72858818	1.68723119	0.44178348	0.53969475	6.78118465	2.46908214	17.2636712	17.1839275	10.3847119	8.9653855	16.1822113	5.21824594	9.86240984	6.83549037	1.57340019	7.69041871
Evidence level	100%	100%	100%	100%	100%	100%	100%	100%	36%	95%	0%	99%	0%	58%	42%	100%
Base decision on:	avidanca laval	avidanca laval	ovidonco lovol	avidanca laval	ovidonco lovol	avidanca laval	avidanca laval	ovidonco lovol	avidanca laval	evidence level	avidanca laval	ovidence level				
Result	μ < Cc	μ < Cc	μ < Co	µ < Cc	μ≥ Cc	µ < Cc	μ≥ Cc	μ « Co	μ≥ Cc	μ≈≥ Cc	μ≥ Cc	µ < Cc				
Select dataset	Οr	O٧	O٧	O٧	O٧	O۲	O۲	Ον	O۲	Ον	O۲	O۲	O۲	Ον	O۲	® γ
Back to data	Go to	outlier te	st	Go to no	rmality t	est	Showin	dividual	summar	у						

PAH'S – OUTLIERS REMOVED

Generic Assessment Criteria

	Residential With Plant Uptake	Residential Without Plant Uptake	Commercial/Industrial
Arsenic	32	35	640
Cadmium	10	17	230
Chromium (III)	2500	2700	29,000
Chromium (IV)	32	35	326
Lead	450	450	5000
Mercury	170	170	3600
Selenium	350	595	13000
Nickel	130	786	1800
Phenol	415	519	1,100,000
Acenaphthene Acenaphthylene	1,000 850	3,910 3,870	100,000 100,000
Anthracene Benzo(a)anthracene	9,200 5.90	23,000 6.00	500,000 97.00
Benzo(a)pyrene	1.00	1.04	14.00
Benzo(b)fluoranthene Benzo(ghi)perylene	7.00 43	7.30 47	100.00 660
Benzo(k)fluoranthene	10.0	10.4	140.0
Chrysene	9	10	140
Copper Free Cyanide	2,300	6,200	70,000 34
Dibenzo(ah)anthracene	34 0.90	34 0.93	13.00
Fluoranthene	670	1,000	23,000
Fluorene	780	2,800	71,000
Ideno(1,2,3-cd)pyrene	4.20	4.40	62.00
Napthalene	8.7	9.0	1,100
Phenanthrene Pyrene	380 1,600	940 2,400	23,000 54,000
Zinc	3,700	40,000	600,000
PETROLEUM HYDROCARBON		,	
Aliphatics			
C6-C8	110	113	13,000
C8-C10 C10-C12	370 110	370	42,000
C12-C16	540	110 540	12,000 49,000
C16-C21	3,000	3,000	91,000
C21-C35	76,000	89,000	1,800,000
Aromatics			
C5-C7	280	970	90,000
C7-C8	610	2,700	190,000
C8-C10	150	190	18,000
C10-C12	340	860	34,000
C12-C16 C16-C21	590 770	1,700 1,300	37,000 28,000
C21-C35	1,200	1,300	28,000
	.,=50	.,500	23,000

Note:

All figures are in mg/kg

Values calculated using CLEA v1.06
All organic determinands calculated using 6% SOM
SGV for Inorganic Hg quoted (ref. SGV Pg5, para 4)

Tier 1 October 2010

UK Drinking Water Standards (UKDWS)

Parameter	Concentration	Units
Acrylamide	0.1	μg/l
Aluminium	200	μgAl/l
Ammonium	0.5	mgNH4/l
Antimony	5	μgSb/l
Arsenic	10	μgAs/l
Benzene	1	μg/l
Benzo(a)pyrene	0.01	μg/l
Boron	1	mgB/l
Bromate	10	μgBrO3/l
Cadmium	5	μgCd/l
Chromium	50	μgCr/l
Chloride (i)	250	mgCl/l
Conductivity (i)	2500	μS/cm at 20 ℃
Copper(ii)	2	mgCu/l
Cyanide	50	μgCN/l
1, 2 dichloroethane	3	μg/l
Epichlorohydrin	0.1	μg/l
Fluoride	1.5	mgF/I
Hydrogen ion	10	pH value
Iron	200	μgFe/l
Lead (ii)	25	μgPb/l
Manganese	50	μgMn/l
Mercury	1	μgHg/l
Mineral Oil (TPH)	10	μg/l
Nickel (ii)	20	μgNi/l
Nitrate (iii)	50	mgNO3/I
Nitrite (iii)	0.5	mgNO2/I
Phenol	0.5	μg/l
Polycyclic aromatic		
hydrocarbons (vii)	0.1	μg/l
Selenium	10	μgSe/l
Sodium	200	mgNa/l
Sulphate (i)	250	mgSO4/l
Tetrachloroethene and		
Trichloroethene (viii)	10	μg/l
Tetrachloromethane	3	μg/l
Trihalomethanes: Total		
(ix)	100	μg/l
Vinyl chloride	0.5	μg/l
Zinc	5000	μg/l

Pesticides		
Aldrin	0.03	μg/l
Dieldrin	0.03	μg/l
Heptachlor	0.03	μg/l
Heptachlor epoxide	0.03	μg/l
other pesticides	0.1	μg/l
Pesticides: Total (vi)	0.5	μg/l

Table 1: Envi	Table 1: Environmental Quality						
Standards (EQS) for List 1 Dangerous							
Substances							
All Freshwater EQS							
Substance	(ug/l)						
Mercury	1						
Cadmium	5						
Hexachlorocyclohe							
xane	0.1						
Carbon							
tetrachloride	12						
Total DDT	0.025						
pp DDT	0.01						
Pentachlorophenol	2						
Dieldrin	0.01						
Isodrin	0.005						
Aldrin	0.01						
Endrin	0.005						
Total 'Drins	0.03						
Hexachlorobenzen							
е	0.03						
Hexachlorobutadie							
ne	0.1						
Chloroform	12						
1,2-dichloroethane	10						
Trichlorethylene	10						
Perchlorethylene	10						
Trichlorobenzene	0.4						

EOS Type nual average	EQS (ug/l) 100 400 1 40 20 50 40 50 2 0.01 500 30 25	Substance Fenitrotion Flucofuron Iron (dissolved) Lead (dissolved) Linuron Malathion Mecoprop Mecoprop Nephthalene Nickel (dissolved) Omethoate PPSSIs	EGS Type Annual average 95 percentile Annual average	(ug/l) 0.01 1 1000 Hardness related (see table 2b for details) 2 2 0.01 0.02 Hardness related (see table 2b for details) 0.01 0.02 0.02 0.02 10 0.01 0.01 0.01 0
nual average	400 1 40 20 50 40 50 2 0.01 500 30	Flucofuron Iron (dissolved) Lead (dissolved) Linuron Malathion Mecoprop Mevinphos Naphthalene Nickel (dissolved) Omethoate	95 percentile Annual average Annual average Annual average Annual average Maximum concentration Annual average Annual average Annual average Annual average	1 1000 Hardness related (see table 2 for details) 2 c 0.01 20 0.02 10 Hardness related (see table 2 for details)
nual average	1 40 20 50 40 50 2 0.01 500 30	Iron (dissolved) Lead (dissolved) Linuron Malathion Mecoprop Mevinphos Naphthalene Nickel (dissolved) Omethoate	Annual average Annual average Annual average Annual average Annual average Maximum concentration Annual average Annual average Annual average Annual average	1000 Hardness related (see table 2b for details) 2 2 0.01 20 0.02 10 Hardness related (see table 2b for details)
nual average nual average nual average nual average nual average nual average nual average nual average nual average nual average	40 20 50 40 50 2 0.01 500 30	Lead (dissolved) Linuron Malathion Mecoprop Mevinphos Naphthalene Nickel (dissolved) Omethoate	Annual average Annual average Annual average Annual average Annual average Maximum concentration Annual average Annual average Annual average	Hardness related (see table 2b for details) 2 0.01 20 0.02 10 Hardness related (see table 2b for details)
nual average nual average nual average nual average nual average nual average nual average nual average	20 50 40 50 2 0.01 500 30	Linuron Malathion Mecoprop Mevinphos Naphthalene Nickel (dissolved) Omethoate	Annual average Annual average Annual average Maximum concentration Annual average Annual average Annual average Annual average	table 2b for details) 2 0.01 20 0.02 10 Hardness related (see table 2b for details)
nual average nual average nual average nual average nual average nual average nual average nual average	20 50 40 50 2 0.01 500 30	Linuron Malathion Mecoprop Mevinphos Naphthalene Nickel (dissolved) Omethoate	Annual average Annual average Annual average Maximum concentration Annual average Annual average Annual average Annual average	2 0.01 20 0.02 10 Hardness related (see table 2b for details)
nual average nual average nual average nual average nual average nual average nual average nual average	50 40 50 2 0.01 500 30	Malathion Mecoprop Mevinphos Naphthalene Nickel (dissolved) Omethoate	Annual average Annual average Maximum concentration Annual average Annual average Annual average	0.01 20 0.02 10 Hardness related (see table 2b for details)
nual average	40 50 2 0.01 500 30	Mecoprop Mevinphos Naphthalene Nickel (dissolved) Omethoate	Annual average Maximum concentration Annual average Annual average Annual average	20 0.02 10 Hardness related (see table 2b for details) 0.01
nual average nual average nual average nual average nual average nual average	50 2 0.01 500 30	Mevinphos Naphthalene Nickel (dissolved) Omethoate	Maximum concentration Annual average Annual average Annual average	0.02 10 Hardness related (see table 2b for details) 0.01
nual average nual average nual average nual average nual average	2 0.01 500 30	Naphthalene Nickel (dissolved) Omethoate	Annual average Annual average Annual average Annual average	10 Hardness related (see table 2b for details) 0.01
nual average nual average nual average nual average nual average	2 0.01 500 30	Naphthalene Nickel (dissolved) Omethoate	Annual average Annual average Annual average	10 Hardness related (see table 2b for details) 0.01
nual average nual average nual average nual average	0.01 500 30	Nickel (dissolved) Omethoate	Annual average Annual average	Hardness related (see table 2b for details) 0.01
nual average nual average nual average	500 30	Omethoate	Annual average	table 2b for details) 0.01
nual average nual average nual average	30		Annual average	
nual average nual average	30			
	25			
nual average		Permethrin	95th percentile	0.01
	2000	Hq	95th percentile	06-Sep
nual average	10	Sulcofuron	95th percentile	25
nual average	Hardness related (see table 2b for details)	Toluene	Annual average	50
nual average	Hardness related (see table 2b for details)	Triazaphos	Annual average	0.005
			Maximum	
th percentile	0.001	Tributyltin	concentration	0.02
nual average	0.5	Trifluralin	Annual average	0.1
nual average	0.001	Triphenyltin	concentration	0.02
Maximum oncentration		Vanadium (dissolved)	Annual average	Hardness related (see table 2b for details)
nual average	1	Xylene (m and p, o)	Annual average	30
nual average	0.003	Zinc (total)	Annual average	Hardness related (see table 2b for details)
	th percentile nual average nual average Maximum ncentration nual average	th percentile 0.001 uual average 0.5 uual average 0.001 Maximum ncentration - uual average 1	h percentile 0.001 Tribut/filin uual average 0.5 Triffuralin uual average 0.001 Tripenytlin Ausimum nocentration - Vanadium (dissolved) uual average 1 Xylene (m and p. o)	h percentile

Table 2b: Environmental Quality Standards (EQS) for hardness related List 2 dangerous substances
--

Substance		EQS (ug/l) for Hardness bands (mg/l CaCO3)						
	EQS type	0-50	>50-100	>100-150	>150-200	>200-250	>250	
Freshwaters, suitabl								
Copper (dissolved)	Annual average	1	6	10	10	10	28	
Copper (dissolved)	95th percentile	5	22	40	40	40	112	
Nickel (dissolved)	Annual average	50	100	150	150	200	200	
Vanadium								
(dissolved)	Annual average	20	20	20	20	60	60	
Freshwaters, suitabl	e for Salmonid (game) fish							
Chromium								
(dissolved)	Annual average	5	10	20	20	50	50	
Lead (dissolved)	Annual average	4	10	10	20	20	20	
Zinc (total)	Annual average	8	50	75	75	75	125	
Zinc (total)	95th percentile	30	200	300	300	300	500	
	e for Cyprinid (coarse) fish						•	
Chromium								
(dissolved)	Annual average	150	175	200	200	250	250	
Lead (dissolved	Annual average	20	125	125	250	250	250	
Zinc (total)	Annual average	75	175	250	250	250	500	
Zinc (total)	95th percentile	300	700	1000	1000	1000	2000	

UKWIR WATER PIPE SELECTION RISK ASSESSMENT

		Pipe material							
		All threshold concentrations are in mg/kg							
	Parameter group	PE	PVC	Barrier pipe (PE-AI-PE)	Wrapped Steel	Wrapped Ductile Iron	Copper		
1	Extended VOC suite by purge and trap or head space and GC-MS with TIC	0.5	0.125	Pass	Pass	Pass	Pass		
1a	+ BTEX + MTBE	0.1	0.03	Pass	Pass	Pass	Pass		
2	SVOCs TIC by purge and trap or head space and GC- MS with TIC (aliphatic and aromatic C5-C10)	2	1.4	Pass	Pass	Pass	Pass		
2e	+ Phenols	2	0.4	Pass	Pass	Pass	Pass		
2f	+ Cresols and chlorinated phenols	2	0.04	Pass	Pass	Pass	Pass		
3	Mineral oil C11-C20	10	Pass	Pass	Pass	Pass	Pass		
4	Mineral oil C21-C40	500	Pass	Pass	Pass	Pass	Pass		
5	Corrosive (Conductivity, Redox and pH)	Pass	Pass	Pass	Corrosive if pH <7 and conductivity >400µS/cm	Corrosive if pH <5, Eh not neutral and conductivity >400 µS/cm	Corrosive if PH <5 or >8 and Eh positive		
	Specific suite identified as relevant following site investigation								
2a	Ethers	0.5	1	Pass	Pass	Pass	Pass		
2b	Nitrobenzene	0.5	0.4	Pass	Pass	Pass	Pass		
2c	Ketones	0.5	0.02	Pass	Pass	Pass	Pass		
2d	Aldehydes	0.5	0.02	Pass	Pa ss	Pass	Pass		
6	Amines	Fail	Pass	Pass	Pass	Pass	Pass		

^{*}UKWIR: Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites Ref. 10/WM/03/21. Jan 2011.